Literature Help
YGP1 / YNL160W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Chuene LT, et al. (2024) Isolation and characterization of Saccharomyces cerevisiae mutants with increased cell wall chitin using fluorescence-activated cell sorting. FEMS Yeast Res 24 PMID:39270658
- Bartolec TK, et al. (2022) Differential Proteome and Interactome Analysis Reveal the Basis of Pleiotropy Associated With the Histidine Methyltransferase Hpm1p. Mol Cell Proteomics 21(7):100249 PMID:35609787
- Freije BJ, et al. (2022) Identifying Interaction Partners of Yeast Protein Disulfide Isomerases Using a Small Thiol-Reactive Cross-Linker: Implications for Secretory Pathway Proteostasis. Chem Res Toxicol 35(2):326-336 PMID:35084835
- Kahar P, et al. (2022) The flocculant Saccharomyces cerevisiae strain gains robustness via alteration of the cell wall hydrophobicity. Metab Eng 72:82-96 PMID:35257867
- Hahne K, et al. (2021) A fluorescence-based yeast sensor for monitoring acetic acid. Eng Life Sci 21(5):303-313 PMID:33976603
- Moreno-García J, et al. (2018) Study of the role of the covalently linked cell wall protein (Ccw14p) and yeast glycoprotein (Ygp1p) within biofilm formation in a flor yeast strain. FEMS Yeast Res 18(2) PMID:29370419
- Ndlovu T, et al. (2018) Yeast Cell Wall Chitin Reduces Wine Haze Formation. Appl Environ Microbiol 84(13) PMID:29703738
- Ryzhova TA, et al. (2018) Screening for amyloid proteins in the yeast proteome. Curr Genet 64(2):469-478 PMID:29027580
- Akdoğan E, et al. (2016) Reduced Glucose Sensation Can Increase the Fitness of Saccharomyces cerevisiae Lacking Mitochondrial DNA. PLoS One 11(1):e0146511 PMID:26751567
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Sugiyama M, et al. (2014) Nuclear localization of Haa1, which is linked to its phosphorylation status, mediates lactic acid tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 80(11):3488-95 PMID:24682296
- Mira NP, et al. (2010) Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS 14(5):587-601 PMID:20955010
- Alejandro-Osorio AL, et al. (2009) The histone deacetylase Rpd3p is required for transient changes in genomic expression in response to stress. Genome Biol 10(5):R57 PMID:19470158
- Curwin AJ, et al. (2009) Phospholipid transfer protein Sec14 is required for trafficking from endosomes and regulates distinct trans-Golgi export pathways. J Biol Chem 284(11):7364-75 PMID:19129178
- Sarry JE, et al. (2007) Analysis of the vacuolar luminal proteome of Saccharomyces cerevisiae. FEBS J 274(16):4287-305 PMID:17651441
- Abraham DS and Vershon AK (2005) N-terminal arm of Mcm1 is required for transcription of a subset of genes involved in maintenance of the cell wall. Eukaryot Cell 4(11):1808-19 PMID:16278448
- Kwon SW (2004) Profiling of soluble proteins in wine by nano-high-performance liquid chromatography/tandem mass spectrometry. J Agric Food Chem 52(24):7258-63 PMID:15563204
- Chang YW, et al. (2001) The rye mutants identify a role for Ssn/Srb proteins of the RNA polymerase II holoenzyme during stationary phase entry in Saccharomyces cerevisiae. Genetics 157(1):17-26 PMID:11139488
- Pardo M, et al. (1999) Two-dimensional analysis of proteins secreted by Saccharomyces cerevisiae regenerating protoplasts: a novel approach to study the cell wall. Yeast 15(6):459-72 PMID:10234784
- Riou C, et al. (1997) Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation. Yeast 13(10):903-15 PMID:9271106
- Nasr F, et al. (1996) The sequence of 36.8 kb from the left arm of chromosome XIV reveals 24 complete open reading frames: 18 correspond to new genes, one of which encodes a protein similar to the human myotonic dystrophy kinase. Yeast 12(2):169-75 PMID:8686380
- Destruelle M, et al. (1994) Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol Cell Biol 14(4):2740-54 PMID:8139573
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- García-García JC, et al. (2025) Comparative Proteomics of Two Flor Yeasts in Sparkling Wine Fermentation: First Approach. Foods 14(2) PMID:39856948
- Rahmasari D, et al. (2025) Factors Affecting D-Lactic Acid Production by Flocculant Saccharomyces cerevisiae Under Non-Neutralizing Conditions. Microorganisms 13(3) PMID:40142511
- Tang S, et al. (2025) Orchestrating multiple subcellular organelles of Saccharomyces cerevisiae for efficient production of squalene. Bioresour Technol 424:132294 PMID:39999895
- Bourgeois NM, et al. (2024) Protein Kinase A Negatively Regulates the Acetic Acid Stress Response in S. cerevisiae. Microorganisms 12(7) PMID:39065219
- Mota MN, et al. (2024) Shared and more specific genetic determinants and pathways underlying yeast tolerance to acetic, butyric, and octanoic acids. Microb Cell Fact 23(1):71 PMID:38419072
- Pangestu R, et al. (2024) Comparative responses of flocculating and nonflocculating yeasts to cell density and chemical stress in lactic acid fermentation. Yeast 41(4):192-206 PMID:38081785
- Avecilla G, et al. (2023) Copy number variation alters local and global mutational tolerance. Genome Res 33(8):1340-1353 PMID:37652668
- Snyman C, et al. (2023) Characterization of Mannoprotein Structural Diversity in Wine Yeast Species. J Agric Food Chem 71(49):19727-19738 PMID:38049383
- Li J, et al. (2022) Increasing extracellular cellulase activity of the recombinant Saccharomyces cerevisiae by engineering cell wall-related proteins for improved consolidated processing of carbon neutral lignocellulosic biomass. Bioresour Technol 365:128132 PMID:36252752
- Bouyx C, et al. (2021) The dual role of amyloid-β-sheet sequences in the cell surface properties of FLO11-encoded flocculins in Saccharomyces cerevisiae. Elife 10 PMID:34467855
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Yamada R, et al. (2021) Improvement of lactic acid tolerance by cocktail δ-integration strategy and identification of the transcription factor PDR3 responsible for lactic acid tolerance in yeast Saccharomyces cerevisiae. World J Microbiol Biotechnol 37(2):19 PMID:33428004
- Yu R, et al. (2019) Cellular response to moderate chromatin architectural defects promotes longevity. Sci Adv 5(7):eaav1165 PMID:31309140
- Cheng Z, et al. (2018) Pervasive, Coordinated Protein-Level Changes Driven by Transcript Isoform Switching during Meiosis. Cell 172(5):910-923.e16 PMID:29474919
- Gil FN, et al. (2018) Comparative analysis of transcriptomic responses to sub-lethal levels of six environmentally relevant pesticides in Saccharomyces cerevisiae. Ecotoxicology 27(7):871-889 PMID:29611082
- Williams TC, et al. (2017) Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast. Synth Biol (Oxf) 2(1):ysw002 PMID:32995501
- Rajkumar AS, et al. (2016) Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Res 44(17):e136 PMID:27325743
- Ear PH, et al. (2013) Dissection of Cdk1-cyclin complexes in vivo. Proc Natl Acad Sci U S A 110(39):15716-21 PMID:24019491
- Breidenbach MA, et al. (2012) Mapping yeast N-glycosites with isotopically recoded glycans. Mol Cell Proteomics 11(6):M111.015339 PMID:22261724
- Tanaka K, et al. (2012) Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 78(22):8161-3 PMID:22961896
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Cocklin R, et al. (2011) New insight into the role of the Cdc34 ubiquitin-conjugating enzyme in cell cycle regulation via Ace2 and Sic1. Genetics 187(3):701-15 PMID:21196523
- Forsmark A, et al. (2011) Quantitative proteomics of yeast post-Golgi vesicles reveals a discriminating role for Sro7p in protein secretion. Traffic 12(6):740-53 PMID:21477180
- Malcher M, et al. (2011) The Yak1 protein kinase lies at the center of a regulatory cascade affecting adhesive growth and stress resistance in Saccharomyces cerevisiae. Genetics 187(3):717-30 PMID:21149646
- Oba T, et al. (2011) Properties of a high malic acid-producing strains of Saccharomyces cerevisiae isolated from sake mash. Biosci Biotechnol Biochem 75(10):2025-9 PMID:21979083
- Breidenbach MA, et al. (2010) Targeted metabolic labeling of yeast N-glycans with unnatural sugars. Proc Natl Acad Sci U S A 107(9):3988-93 PMID:20142501
- D'Amato A, et al. (2010) Noah's nectar: the proteome content of a glass of red wine. J Proteomics 73(12):2370-7 PMID:20813213
- Palmisano G, et al. (2010) Glycoproteomic profile in wine: a 'sweet' molecular renaissance. J Proteome Res 9(12):6148-59 PMID:20923237
- Rodriguez-Colman MJ, et al. (2010) The forkhead transcription factor Hcm1 promotes mitochondrial biogenesis and stress resistance in yeast. J Biol Chem 285(47):37092-101 PMID:20847055
- Rowe JD, et al. (2010) Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees. J Agric Food Chem 58(4):2337-46 PMID:20108898
- Silverman SJ, et al. (2010) Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate. Proc Natl Acad Sci U S A 107(15):6946-51 PMID:20335538
- Stanley D, et al. (2010) Transcriptional changes associated with ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88(1):231-9 PMID:20661734
- Wang YC and Chen BS (2010) Integrated cellular network of transcription regulations and protein-protein interactions. BMC Syst Biol 4:20 PMID:20211003
- Wu CY, et al. (2010) Control of transcription by cell size. PLoS Biol 8(11):e1000523 PMID:21072241
- Yu L, et al. (2010) Microarray analysis of p-anisaldehyde-induced transcriptome of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 37(3):313-22 PMID:20024600
- de Melo HF, et al. (2010) Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J Appl Microbiol 109(1):116-27 PMID:20002866
- Chen AK, et al. (2009) Response of Saccharomyces cerevisiae to stress-free acidification. J Microbiol 47(1):1-8 PMID:19229485
- Picotti P, et al. (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138(4):795-806 PMID:19664813
- Váchová L, et al. (2009) Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol 11(2):494-504 PMID:19196279
- Guo N, et al. (2008) Global gene expression profile of Saccharomyces cerevisiae induced by dictamnine. Yeast 25(9):631-41 PMID:18727144
- Mirzaei H and Regnier F (2008) Protein:protein aggregation induced by protein oxidation. J Chromatogr B Analyt Technol Biomed Life Sci 873(1):8-14 PMID:18760979
- Rancati G, et al. (2008) Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 135(5):879-93 PMID:19041751
- Rojas M, et al. (2008) Genomewide expression profiling of cryptolepine-induced toxicity in Saccharomyces cerevisiae. Antimicrob Agents Chemother 52(11):3844-50 PMID:18710911
- Trott A, et al. (2008) Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell 19(3):1104-12 PMID:18199679
- Wu WS and Li WH (2008) Identifying gene regulatory modules of heat shock response in yeast. BMC Genomics 9:439 PMID:18811975
- Coronado JE, et al. (2007) Conserved processes and lineage-specific proteins in fungal cell wall evolution. Eukaryot Cell 6(12):2269-77 PMID:17951517
- Dardalhon M, et al. (2007) Specific transcriptional responses induced by 8-methoxypsoralen and UVA in yeast. FEMS Yeast Res 7(6):866-78 PMID:17608707
- Liu X, et al. (2007) Genetic and comparative transcriptome analysis of bromodomain factor 1 in the salt stress response of Saccharomyces cerevisiae. Curr Microbiol 54(4):325-30 PMID:17334841
- Chen H and Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20(9):1150-61 PMID:16618799
- Cowart LA, et al. (2006) Distinct roles for de novo versus hydrolytic pathways of sphingolipid biosynthesis in Saccharomyces cerevisiae. Biochem J 393(Pt 3):733-40 PMID:16201964
- Kawahata M, et al. (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6(6):924-36 PMID:16911514
- Steinboeck F, et al. (2006) Novel regulatory properties of Saccharomyces cerevisiae Arp4. J Biochem 139(4):741-51 PMID:16672275
- Brauer MJ, et al. (2005) Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. Mol Biol Cell 16(5):2503-17 PMID:15758028
- Fernandes AR, et al. (2005) Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337(1):95-103 PMID:16176797
- Daran-Lapujade P, et al. (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279(10):9125-38 PMID:14630934
- Carrasco P, et al. (2003) Arginase activity is a useful marker of nitrogen limitation during alcoholic fermentations. Syst Appl Microbiol 26(3):471-9 PMID:14529191
- Jones DL, et al. (2003) Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway. Physiol Genomics 16(1):107-18 PMID:14570984
- Odani M, et al. (2003) Screening of genes that respond to cryopreservation stress using yeast DNA microarray. Cryobiology 47(2):155-64 PMID:14580849
- Zeitlinger J, et al. (2003) Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113(3):395-404 PMID:12732146
- Palková Z, et al. (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13(11):3901-14 PMID:12429834
- Kapteyn JC, et al. (2001) Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39(2):469-79 PMID:11136466
- Molina M, et al. (2000) Protein localisation approaches for understanding yeast cell wall biogenesis. Microsc Res Tech 51(6):601-12 PMID:11169861
- Ferea TL, et al. (1999) Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci U S A 96(17):9721-6 PMID:10449761
- Jung US and Levin DE (1999) Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol 34(5):1049-57 PMID:10594829
Reviews
No reviews curated.
Download References (.nbib)
- Kalebina TS, et al. (2024) Importance of Non-Covalent Interactions in Yeast Cell Wall Molecular Organization. Int J Mol Sci 25(5) PMID:38473742
- Minnaar LS, et al. (2024) Engineering Saccharomyces cerevisiae for application in integrated bioprocessing biorefineries. Curr Opin Biotechnol 85:103030 PMID:38091873
- Li M, et al. (2023) General mechanisms of weak acid-tolerance and current strategies for the development of tolerant yeasts. World J Microbiol Biotechnol 40(2):49 PMID:38133718
- Topaloğlu A, et al. (2023) From Saccharomyces cerevisiae to Ethanol: Unlocking the Power of Evolutionary Engineering in Metabolic Engineering Applications. J Fungi (Basel) 9(10) PMID:37888240
- Li B, et al. (2022) Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains. Biotechnol Biofuels Bioprod 15(1):28 PMID:35292082
- Ribeiro RA, et al. (2022) The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 13:953479 PMID:35966694
- Morales P, et al. (2021) Proteomic Characterization of EVs in Non-pathogenic Yeast Cells. Curr Top Microbiol Immunol 432:161-170 PMID:34972884
- Cunha JT, et al. (2019) Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl Microbiol Biotechnol 103(1):159-175 PMID:30397768
- Ogawa M, et al. (2019) New insights on yeast and filamentous fungus adhesion in a natural co-immobilization system: proposed advances and applications in wine industry. Appl Microbiol Biotechnol 103(12):4723-4731 PMID:31079167
- Palma M, et al. (2018) Adaptive Response and Tolerance to Acetic Acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: A Physiological Genomics Perspective. Front Microbiol 9:274 PMID:29515554
- Watcharawipas A, et al. (2018) Sodium Acetate Responses in Saccharomyces cerevisiae and the Ubiquitin Ligase Rsp5. Front Microbiol 9:2495 PMID:30459728
- Stanley D, et al. (2010) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109(1):13-24 PMID:20070446
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Curwin AJ, et al. (2009) Phospholipid transfer protein Sec14 is required for trafficking from endosomes and regulates distinct trans-Golgi export pathways. J Biol Chem 284(11):7364-75 PMID:19129178
- Pardo M, et al. (1999) Two-dimensional analysis of proteins secreted by Saccharomyces cerevisiae regenerating protoplasts: a novel approach to study the cell wall. Yeast 15(6):459-72 PMID:10234784
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Bertgen L, et al. (2024) Distinct types of intramitochondrial protein aggregates protect mitochondria against proteotoxic stress. Cell Rep 43(4):114018 PMID:38551959
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Carey SB, et al. (2023) A synthetic genetic array screen for interactions with the RNA helicase DED1 during cell stress in budding yeast. G3 (Bethesda) 13(1) PMID:36409020
- Courtin B, et al. (2023) Xrn1 biochemically associates with eisosome proteins after the post diauxic shift in yeast. MicroPubl Biol 2023 PMID:37746059
- Meyer L, et al. (2023) eIF2A represses cell wall biogenesis gene expression in Saccharomyces cerevisiae. PLoS One 18(11):e0293228 PMID:38011112
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Freije BJ, et al. (2022) Identifying Interaction Partners of Yeast Protein Disulfide Isomerases Using a Small Thiol-Reactive Cross-Linker: Implications for Secretory Pathway Proteostasis. Chem Res Toxicol 35(2):326-336 PMID:35084835
- Khan MM, et al. (2022) Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner. EMBO J 41(3):e109360 PMID:34918374
- Lehner MH, et al. (2022) Yeast Smy2 and its human homologs GIGYF1 and -2 regulate Cdc48/VCP function during transcription stress. Cell Rep 41(4):111536 PMID:36288698
- Yang X, et al. (2022) The ubiquitin-proteasome system regulates meiotic chromosome organization. Proc Natl Acad Sci U S A 119(17):e2106902119 PMID:35439061
- Chang Y, et al. (2021) Analysis of the TORC1 interactome reveals a spatially distinct function of TORC1 in mRNP complexes. J Cell Biol 220(4) PMID:33566094
- Gotor NL, et al. (2020) RNA-binding and prion domains: the Yin and Yang of phase separation. Nucleic Acids Res 48(17):9491-9504 PMID:32857852
- Kolitsida P, et al. (2019) Phosphorylation of mitochondrial matrix proteins regulates their selective mitophagic degradation. Proc Natl Acad Sci U S A 116(41):20517-20527 PMID:31548421
- Mönkemeyer L, et al. (2019) Chaperone Function of Hgh1 in the Biogenesis of Eukaryotic Elongation Factor 2. Mol Cell 74(1):88-100.e9 PMID:30876804
- Rössler I, et al. (2019) Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME. Nucleic Acids Res 47(13):6984-7002 PMID:31062022
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Ryzhova TA, et al. (2018) Screening for amyloid proteins in the yeast proteome. Curr Genet 64(2):469-478 PMID:29027580
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Sung MK, et al. (2016) A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. Elife 5 PMID:27552055
- Lapointe CP, et al. (2015) Protein-RNA networks revealed through covalent RNA marks. Nat Methods 12(12):1163-70 PMID:26524240
- Mitchell SF, et al. (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20(1):127-33 PMID:23222640
- Qiu J, et al. (2013) Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 154(3):596-608 PMID:23911324
- Srikumar T, et al. (2013) A global S. cerevisiae small ubiquitin-related modifier (SUMO) system interactome. Mol Syst Biol 9:668 PMID:23712011
- Franzosa EA, et al. (2011) Heterozygous yeast deletion collection screens reveal essential targets of Hsp90. PLoS One 6(11):e28211 PMID:22140548
- Hasegawa Y, et al. (2008) Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14(11):2333-47 PMID:18805955
- Ho Y, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180-3 PMID:11805837
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Download References (.nbib)
- Rodriguez-Colman MJ, et al. (2010) The forkhead transcription factor Hcm1 promotes mitochondrial biogenesis and stress resistance in yeast. J Biol Chem 285(47):37092-101 PMID:20847055
- Abraham DS and Vershon AK (2005) N-terminal arm of Mcm1 is required for transcription of a subset of genes involved in maintenance of the cell wall. Eukaryot Cell 4(11):1808-19 PMID:16278448
- Keller G, et al. (2001) Haa1, a protein homologous to the copper-regulated transcription factor Ace1, is a novel transcriptional activator. J Biol Chem 276(42):38697-702 PMID:11504737
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Chuene LT, et al. (2024) Isolation and characterization of Saccharomyces cerevisiae mutants with increased cell wall chitin using fluorescence-activated cell sorting. FEMS Yeast Res 24 PMID:39270658
- Mota MN, et al. (2024) Shared and more specific genetic determinants and pathways underlying yeast tolerance to acetic, butyric, and octanoic acids. Microb Cell Fact 23(1):71 PMID:38419072
- Rossignol T, et al. (2021) Ethylzingerone, a Novel Compound with Antifungal Activity. Antimicrob Agents Chemother 65(4) PMID:33468481
- Helsen J, et al. (2020) Gene Loss Predictably Drives Evolutionary Adaptation. Mol Biol Evol 37(10):2989-3002 PMID:32658971
- Johnston NR, et al. (2020) Genome-Wide Identification of Genes Involved in General Acid Stress and Fluoride Toxicity in Saccharomyces cerevisiae. Front Microbiol 11:1410 PMID:32670247
- Stenger M, et al. (2020) Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. cerevisiae. Microb Cell 7(9):234-249 PMID:32904421
- Kuang Z, et al. (2017) Msn2/4 regulate expression of glycolytic enzymes and control transition from quiescence to growth. Elife 6 PMID:28949295
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Ostrow AZ, et al. (2014) Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9(2):e87647 PMID:24504085
- VanderSluis B, et al. (2014) Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol 15(4):R64 PMID:24721214
- Cuesta-Marbán Á, et al. (2013) Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast. J Biol Chem 288(12):8405-8418 PMID:23335509
- Gaytán BD, et al. (2013) Functional profiling discovers the dieldrin organochlorinated pesticide affects leucine availability in yeast. Toxicol Sci 132(2):347-58 PMID:23358190
- Marek A and Korona R (2013) Restricted pleiotropy facilitates mutational erosion of major life-history traits. Evolution 67(11):3077-86 PMID:24151994
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Vandenbosch D, et al. (2013) Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae. FEMS Yeast Res 13(8):720-30 PMID:24034557
- Carrillo E, et al. (2012) Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30. Mol Biol Cell 23(10):1928-42 PMID:22438580
- Orij R, et al. (2012) Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pH(c) in Saccharomyces cerevisiae. Genome Biol 13(9):R80 PMID:23021432
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Uluisik I, et al. (2011) Boron stress activates the general amino acid control mechanism and inhibits protein synthesis. PLoS One 6(11):e27772 PMID:22114689
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Holbein S, et al. (2009) Cordycepin interferes with 3' end formation in yeast independently of its potential to terminate RNA chain elongation. RNA 15(5):837-49 PMID:19324962
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- MacIsaac KD, et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113 PMID:16522208
- Yamamoto A, et al. (2005) Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem 280(12):11911-9 PMID:15647283
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549