Literature Help
IES2 / YNL215W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Hurst V, et al. (2021) A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress. EMBO J 40(21):e108439 PMID:34569643
- Zhang X, et al. (2019) Structure and functional interactions of INO80 actin/Arp module. J Mol Cell Biol 11(5):345-355 PMID:30388237
- Poli J, et al. (2016) Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes Dev 30(3):337-54 PMID:26798134
- Papsdorf K, et al. (2015) Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects. BMC Genomics 16(1):662 PMID:26335097
- Watanabe S, et al. (2015) Structural analyses of the chromatin remodelling enzymes INO80-C and SWR-C. Nat Commun 6:7108 PMID:25964121
- Yao W, et al. (2015) Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin Remodeling Activities. J Biol Chem 290(42):25700-9 PMID:26306040
- Ölmezer G, et al. (2015) DNA repair defects ascribed to pby1 are caused by disruption of Holliday junction resolvase Mus81-Mms4. DNA Repair (Amst) 33:17-23 PMID:26068713
- Alcid EA and Tsukiyama T (2014) ATP-dependent chromatin remodeling shapes the long noncoding RNA landscape. Genes Dev 28(21):2348-60 PMID:25367034
- Tosi A, et al. (2013) Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154(6):1207-19 PMID:24034245
- Chambers AL, et al. (2012) The INO80 chromatin remodeling complex prevents polyploidy and maintains normal chromatin structure at centromeres. Genes Dev 26(23):2590-603 PMID:23207916
- Tkach JM, et al. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966-76 PMID:22842922
- Ottosson LG, et al. (2010) Sulfate assimilation mediates tellurite reduction and toxicity in Saccharomyces cerevisiae. Eukaryot Cell 9(10):1635-47 PMID:20675578
- Benbow SZ and DuBois ML (2008) The dosage of chromatin proteins affects transcriptional silencing and DNA repair in Saccharomyces cerevisiae. FEBS Lett 582(4):497-502 PMID:18211810
- Vincent JA, et al. (2008) ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat Struct Mol Biol 15(5):477-84 PMID:18408730
- Snoek IS and Steensma HY (2006) Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res 6(3):393-403 PMID:16630279
- Shen X, et al. (2003) Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol Cell 12(1):147-55 PMID:12887900
- Wysocki R, et al. (1999) Disruption and basic phenotypic analysis of 18 novel genes from the yeast Saccharomyces cerevisiae. Yeast 15(2):165-71 PMID:10029995
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Kociemba J, et al. (2024) Multi-signal regulation of the GSK-3β homolog Rim11 controls meiosis entry in budding yeast. EMBO J 43(15):3256-3286 PMID:38886580
- Hsieh LJ, et al. (2022) A hexasome is the preferred substrate for the INO80 chromatin remodeling complex, allowing versatility of function. Mol Cell 82(11):2098-2112.e4 PMID:35597239
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Ayala R, et al. (2018) Structure and regulation of the human INO80-nucleosome complex. Nature 556(7701):391-395 PMID:29643506
- Willhoft O, et al. (2016) Synergy and antagonism in regulation of recombinant human INO80 chromatin remodeling complex. Nucleic Acids Res 44(17):8179-88 PMID:27257055
- Cao L, et al. (2015) Negative Regulation of p21Waf1/Cip1 by Human INO80 Chromatin Remodeling Complex Is Implicated in Cell Cycle Phase G2/M Arrest and Abnormal Chromosome Stability. PLoS One 10(9):e0137411 PMID:26340092
- Sardiu ME, et al. (2015) Conserved abundance and topological features in chromatin-remodeling protein interaction networks. EMBO Rep 16(1):116-26 PMID:25427557
- Hamperl S, et al. (2014) Compositional and structural analysis of selected chromosomal domains from Saccharomyces cerevisiae. Nucleic Acids Res 42(1):e2 PMID:24106087
- Rosonina E, et al. (2014) Threonine-4 of the budding yeast RNAP II CTD couples transcription with Htz1-mediated chromatin remodeling. Proc Natl Acad Sci U S A 111(33):11924-31 PMID:25071213
- Yen K, et al. (2013) SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes. Cell 154(6):1246-56 PMID:24034248
- Chen L, et al. (2011) Subunit organization of the human INO80 chromatin remodeling complex: an evolutionarily conserved core complex catalyzes ATP-dependent nucleosome remodeling. J Biol Chem 286(13):11283-9 PMID:21303910
- Cocklin R, et al. (2011) New insight into the role of the Cdc34 ubiquitin-conjugating enzyme in cell cycle regulation via Ace2 and Sic1. Genetics 187(3):701-15 PMID:21196523
- Villa-García MJ, et al. (2011) Genome-wide screen for inositol auxotrophy in Saccharomyces cerevisiae implicates lipid metabolism in stress response signaling. Mol Genet Genomics 285(2):125-49 PMID:21136082
- On T, et al. (2010) The evolutionary landscape of the chromatin modification machinery reveals lineage specific gains, expansions, and losses. Proteins 78(9):2075-89 PMID:20455264
- Tan SX, et al. (2009) Cu, Zn superoxide dismutase and NADP(H) homeostasis are required for tolerance of endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Biol Cell 20(5):1493-508 PMID:19129474
- Abe F and Minegishi H (2008) Global screening of genes essential for growth in high-pressure and cold environments: searching for basic adaptive strategies using a yeast deletion library. Genetics 178(2):851-72 PMID:18245339
- Huang B, et al. (2008) A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 14(10):2183-94 PMID:18755837
- Shevchenko A, et al. (2008) Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment. Genome Biol 9(11):R167 PMID:19040720
- Lockshon D, et al. (2007) The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 175(1):77-91 PMID:17151231
- Morrison AJ, et al. (2004) INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119(6):767-75 PMID:15607974
- Tong AH, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808-13 PMID:14764870
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Higgins VJ, et al. (2002) Phenotypic analysis of gene deletant strains for sensitivity to oxidative stress. Yeast 19(3):203-14 PMID:11816028
- Tong AH, et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550):2364-8 PMID:11743205
- de Groot PW, et al. (2001) A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genomics 2(3):124-42 PMID:18628907
- Rieger KJ, et al. (1999) Chemotyping of yeast mutants using robotics. Yeast 15(10B):973-86 PMID:10407277
Reviews
No reviews curated.
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Chambers AL, et al. (2012) The INO80 chromatin remodeling complex prevents polyploidy and maintains normal chromatin structure at centromeres. Genes Dev 26(23):2590-603 PMID:23207916
- Ottosson LG, et al. (2010) Sulfate assimilation mediates tellurite reduction and toxicity in Saccharomyces cerevisiae. Eukaryot Cell 9(10):1635-47 PMID:20675578
- Benbow SZ and DuBois ML (2008) The dosage of chromatin proteins affects transcriptional silencing and DNA repair in Saccharomyces cerevisiae. FEBS Lett 582(4):497-502 PMID:18211810
- Wysocki R, et al. (1999) Disruption and basic phenotypic analysis of 18 novel genes from the yeast Saccharomyces cerevisiae. Yeast 15(2):165-71 PMID:10029995
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Jiang L, et al. (2024) Identification of the Beta Subunit Fas1p of Fatty Acid Synthetase as an Interacting Partner of Yeast Calcium/Calmodulin-Dependent Protein Kinase Cmk2p Through Mass Spectrometry Analysis. Appl Biochem Biotechnol 196(10):6836-6848 PMID:38411936
- Carey SB, et al. (2023) A synthetic genetic array screen for interactions with the RNA helicase DED1 during cell stress in budding yeast. G3 (Bethesda) 13(1) PMID:36409020
- Cohen N, et al. (2023) A systematic proximity ligation approach to studying protein-substrate specificity identifies the substrate spectrum of the Ssh1 translocon. EMBO J 42(11):e113385 PMID:37073826
- Hadjicharalambous A, et al. (2023) Checkpoint kinase interaction with DNA polymerase alpha regulates replication progression during stress. Wellcome Open Res 8:327 PMID:37766847
- Litwin I, et al. (2023) ISW1a modulates cohesin distribution in centromeric and pericentromeric regions. Nucleic Acids Res 51(17):9101-9121 PMID:37486771
- Li X, et al. (2023) The TORC1 activates Rpd3L complex to deacetylate Ino80 and H2A.Z and repress autophagy. Sci Adv 9(10):eade8312 PMID:36888706
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Lu PYT, et al. (2022) A balancing act: interactions within NuA4/TIP60 regulate picNuA4 function in Saccharomyces cerevisiae and humans. Genetics 222(3) PMID:36066422
- Peil K, et al. (2022) Transcriptional regulator Taf14 binds DNA and is required for the function of transcription factor TFIID in the absence of histone H2A.Z. J Biol Chem 298(9):102369 PMID:35970389
- Hurst V, et al. (2021) A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress. EMBO J 40(21):e108439 PMID:34569643
- Kochan DZ, et al. (2021) The RNA-binding protein Puf5 contributes to buffering of mRNA upon chromatin-mediated changes in nascent transcription. J Cell Sci 134(15) PMID:34350963
- Perica T, et al. (2021) Systems-level effects of allosteric perturbations to a model molecular switch. Nature 599(7883):152-157 PMID:34646016
- den Brave F, et al. (2020) Chaperone-Mediated Protein Disaggregation Triggers Proteolytic Clearance of Intra-nuclear Protein Inclusions. Cell Rep 31(9):107680 PMID:32492414
- Sun L, et al. (2020) Thermosensitive Nucleosome Editing Reveals the Role of DNA Sequence in Targeted Histone Variant Deposition. Cell Rep 30(1):257-268.e5 PMID:31914392
- Wilfling F, et al. (2020) A Selective Autophagy Pathway for Phase-Separated Endocytic Protein Deposits. Mol Cell 80(5):764-778.e7 PMID:33207182
- Zhang X, et al. (2019) Structure and functional interactions of INO80 actin/Arp module. J Mol Cell Biol 11(5):345-355 PMID:30388237
- Brahma S, et al. (2018) The Arp8 and Arp4 module acts as a DNA sensor controlling INO80 chromatin remodeling. Nat Commun 9(1):3309 PMID:30120252
- Espinosa-Cantú A, et al. (2018) Protein Moonlighting Revealed by Noncatalytic Phenotypes of Yeast Enzymes. Genetics 208(1):419-431 PMID:29127264
- Knoll KR, et al. (2018) The nuclear actin-containing Arp8 module is a linker DNA sensor driving INO80 chromatin remodeling. Nat Struct Mol Biol 25(9):823-832 PMID:30177756
- MacGilvray ME, et al. (2018) Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response. PLoS Comput Biol 13(5):e1006088 PMID:29738528
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Mount HO, et al. (2018) Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genet 14(4):e1007319 PMID:29702647
- Loll-Krippleber R and Brown GW (2017) P-body proteins regulate transcriptional rewiring to promote DNA replication stress resistance. Nat Commun 8(1):558 PMID:28916784
- Sardiu ME, et al. (2017) Identification of Topological Network Modules in Perturbed Protein Interaction Networks. Sci Rep 7:43845 PMID:28272416
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Krietenstein N, et al. (2016) Genomic Nucleosome Organization Reconstituted with Pure Proteins. Cell 167(3):709-721.e12 PMID:27768892
- Kyriakou D, et al. (2016) Functional characterisation of long intergenic non-coding RNAs through genetic interaction profiling in Saccharomyces cerevisiae. BMC Biol 14(1):106 PMID:27927215
- Lakshminarasimhan M, et al. (2016) Proteomic and Genomic Analyses of the Rvb1 and Rvb2 Interaction Network upon Deletion of R2TP Complex Components. Mol Cell Proteomics 15(3):960-74 PMID:26831523
- Poli J, et al. (2016) Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes Dev 30(3):337-54 PMID:26798134
- Styles EB, et al. (2016) Exploring Quantitative Yeast Phenomics with Single-Cell Analysis of DNA Damage Foci. Cell Syst 3(3):264-277.e10 PMID:27617677
- Sung MK, et al. (2016) A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. Elife 5 PMID:27552055
- Yao W, et al. (2016) The INO80 Complex Requires the Arp5-Ies6 Subcomplex for Chromatin Remodeling and Metabolic Regulation. Mol Cell Biol 36(6):979-91 PMID:26755556
- Lafon A, et al. (2015) INO80 Chromatin Remodeler Facilitates Release of RNA Polymerase II from Chromatin for Ubiquitin-Mediated Proteasomal Degradation. Mol Cell 60(5):784-796 PMID:26656161
- Ölmezer G, et al. (2015) DNA repair defects ascribed to pby1 are caused by disruption of Holliday junction resolvase Mus81-Mms4. DNA Repair (Amst) 33:17-23 PMID:26068713
- Watanabe S, et al. (2015) Structural analyses of the chromatin remodelling enzymes INO80-C and SWR-C. Nat Commun 6:7108 PMID:25964121
- Yao W, et al. (2015) Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin Remodeling Activities. J Biol Chem 290(42):25700-9 PMID:26306040
- Lahiri S, et al. (2014) A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol 12(10):e1001969 PMID:25313861
- Omidi K, et al. (2014) Phosphatase complex Pph3/Psy2 is involved in regulation of efficient non-homologous end-joining pathway in the yeast Saccharomyces cerevisiae. PLoS One 9(1):e87248 PMID:24498054
- Rosonina E, et al. (2014) Threonine-4 of the budding yeast RNAP II CTD couples transcription with Htz1-mediated chromatin remodeling. Proc Natl Acad Sci U S A 111(33):11924-31 PMID:25071213
- Aristizabal MJ, et al. (2013) High-throughput genetic and gene expression analysis of the RNAPII-CTD reveals unexpected connections to SRB10/CDK8. PLoS Genet 9(8):e1003758 PMID:24009531
- Chang JS and Winston F (2013) Cell-cycle perturbations suppress the slow-growth defect of spt10Δ mutants in Saccharomyces cerevisiae. G3 (Bethesda) 3(3):573-83 PMID:23450643
- Nguyen VQ, et al. (2013) Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell 154(6):1220-31 PMID:24034246
- Tosi A, et al. (2013) Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154(6):1207-19 PMID:24034245
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Chang HY, et al. (2011) Genome-wide analysis to identify pathways affecting telomere-initiated senescence in budding yeast. G3 (Bethesda) 1(3):197-208 PMID:22384331
- Cocklin R, et al. (2011) New insight into the role of the Cdc34 ubiquitin-conjugating enzyme in cell cycle regulation via Ace2 and Sic1. Genetics 187(3):701-15 PMID:21196523
- Franzosa EA, et al. (2011) Heterozygous yeast deletion collection screens reveal essential targets of Hsp90. PLoS One 6(11):e28211 PMID:22140548
- Hoppins S, et al. (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195(2):323-40 PMID:21987634
- Scherrer T, et al. (2011) Defining potentially conserved RNA regulons of homologous zinc-finger RNA-binding proteins. Genome Biol 12(1):R3 PMID:21232131
- Stirling PC, et al. (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7(4):e1002057 PMID:21552543
- Zhu X, et al. (2011) Histone modifications influence mediator interactions with chromatin. Nucleic Acids Res 39(19):8342-54 PMID:21742760
- Akiyoshi B, et al. (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468(7323):576-9 PMID:21107429
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Liu B, et al. (2010) The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140(2):257-67 PMID:20141839
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Beltrao P, et al. (2009) Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol 7(6):e1000134 PMID:19547744
- Hannum G, et al. (2009) Genome-wide association data reveal a global map of genetic interactions among protein complexes. PLoS Genet 5(12):e1000782 PMID:20041197
- Lin YY, et al. (2009) Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 136(6):1073-84 PMID:19303850
- Dixon SJ, et al. (2008) Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc Natl Acad Sci U S A 105(43):16653-8 PMID:18931302
- Lin YY, et al. (2008) A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev 22(15):2062-74 PMID:18676811
- Logan MR, et al. (2008) Genetic interaction network of the Saccharomyces cerevisiae type 1 phosphatase Glc7. BMC Genomics 9:336 PMID:18627629
- Vincent JA, et al. (2008) ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat Struct Mol Biol 15(5):477-84 PMID:18408730
- Collins SR, et al. (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446(7137):806-10 PMID:17314980
- Morrison AJ, et al. (2007) Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses. Cell 130(3):499-511 PMID:17693258
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Pan X, et al. (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124(5):1069-81 PMID:16487579
- Zhao R, et al. (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120(5):715-27 PMID:15766533
- Morrison AJ, et al. (2004) INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119(6):767-75 PMID:15607974
- Tong AH, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808-13 PMID:14764870
- Krogan NJ, et al. (2003) A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 12(6):1565-76 PMID:14690608
- Sanders SL, et al. (2002) Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol 22(13):4723-38 PMID:12052880
- Tong AH, et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550):2364-8 PMID:11743205
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Bhagwat NR, et al. (2021) SUMO is a pervasive regulator of meiosis. Elife 10 PMID:33502312
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- Pultz D, et al. (2012) Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae. Mol Biosyst 8(3):796-803 PMID:22218487
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Albuquerque CP, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389-96 PMID:18407956
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Mota MN, et al. (2024) Shared and more specific genetic determinants and pathways underlying yeast tolerance to acetic, butyric, and octanoic acids. Microb Cell Fact 23(1):71 PMID:38419072
- Guan M, et al. (2023) Delving into the molecular initiating event of cadmium toxification via the dose-dependent functional genomics approach in Saccharomyces cerevisiae. Environ Pollut 323:121287 PMID:36791950
- Jin X, et al. (2021) A Genome-Wide Screen in Saccharomyces cerevisiae Reveals a Critical Role for Oxidative Phosphorylation in Cellular Tolerance to Lithium Hexafluorophosphate. Cells 10(4) PMID:33924665
- Ogbede JU, et al. (2021) A genome-wide portrait of pervasive drug contaminants. Sci Rep 11(1):12487 PMID:34127714
- Guan M, et al. (2020) Molecular fingerprints of conazoles via functional genomic profiling of Saccharomyces cerevisiae. Toxicol In Vitro 69:104998 PMID:32919014
- Helsen J, et al. (2020) Gene Loss Predictably Drives Evolutionary Adaptation. Mol Biol Evol 37(10):2989-3002 PMID:32658971
- Ivashov V, et al. (2020) Complementary α-arrestin-ubiquitin ligase complexes control nutrient transporter endocytosis in response to amino acids. Elife 9 PMID:32744498
- Johnston NR, et al. (2020) Genome-Wide Identification of Genes Involved in General Acid Stress and Fluoride Toxicity in Saccharomyces cerevisiae. Front Microbiol 11:1410 PMID:32670247
- Tigano M, et al. (2015) Elongator-dependent modification of cytoplasmic tRNALysUUU is required for mitochondrial function under stress conditions. Nucleic Acids Res 43(17):8368-80 PMID:26240381
- Marek A and Korona R (2013) Restricted pleiotropy facilitates mutational erosion of major life-history traits. Evolution 67(11):3077-86 PMID:24151994
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- North M, et al. (2012) Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae. PLoS Genet 8(6):e1002699 PMID:22685415
- O'Connor ST, et al. (2012) Genome-Wide Functional and Stress Response Profiling Reveals Toxic Mechanism and Genes Required for Tolerance to Benzo[a]pyrene in S. cerevisiae. Front Genet 3:316 PMID:23403841
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Schmidt M, et al. (2012) Role of Hog1, Tps1 and Sod1 in boric acid tolerance of Saccharomyces cerevisiae. Microbiology (Reading) 158(Pt 10):2667-2678 PMID:22902726
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Villa-García MJ, et al. (2011) Genome-wide screen for inositol auxotrophy in Saccharomyces cerevisiae implicates lipid metabolism in stress response signaling. Mol Genet Genomics 285(2):125-49 PMID:21136082
- Yoshikawa K, et al. (2011) Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28(5):349-61 PMID:21341307
- Kapitzky L, et al. (2010) Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action. Mol Syst Biol 6:451 PMID:21179023
- Auesukaree C, et al. (2009) Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet 50(3):301-10 PMID:19638689
- Burston HE, et al. (2009) Regulators of yeast endocytosis identified by systematic quantitative analysis. J Cell Biol 185(6):1097-110 PMID:19506040
- Tan SX, et al. (2009) Cu, Zn superoxide dismutase and NADP(H) homeostasis are required for tolerance of endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Biol Cell 20(5):1493-508 PMID:19129474
- Zhou X, et al. (2009) A genome-wide screen in Saccharomyces cerevisiae reveals pathways affected by arsenic toxicity. Genomics 94(5):294-307 PMID:19631266
- Abe F and Minegishi H (2008) Global screening of genes essential for growth in high-pressure and cold environments: searching for basic adaptive strategies using a yeast deletion library. Genetics 178(2):851-72 PMID:18245339
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Huang B, et al. (2008) A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 14(10):2183-94 PMID:18755837
- Sinha H, et al. (2008) Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180(3):1661-70 PMID:18780730
- Lockshon D, et al. (2007) The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 175(1):77-91 PMID:17151231
- Brown JA, et al. (2006) Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol Syst Biol 2:2006.0001 PMID:16738548
- Kawahata M, et al. (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6(6):924-36 PMID:16911514
- Snoek IS and Steensma HY (2006) Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res 6(3):393-403 PMID:16630279
- Deutschbauer AM, et al. (2005) Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169(4):1915-25 PMID:15716499
- Perrone GG, et al. (2005) Genetic and environmental factors influencing glutathione homeostasis in Saccharomyces cerevisiae. Mol Biol Cell 16(1):218-30 PMID:15509654
- Parsons AB, et al. (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22(1):62-9 PMID:14661025
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
- Higgins VJ, et al. (2002) Phenotypic analysis of gene deletant strains for sensitivity to oxidative stress. Yeast 19(3):203-14 PMID:11816028
- Wilson WA, et al. (2002) Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level. Mol Cell Proteomics 1(3):232-42 PMID:12096123
- Rieger KJ, et al. (1999) Chemotyping of yeast mutants using robotics. Yeast 15(10B):973-86 PMID:10407277