Reference: Liang JO and Kornfeld S (1997) Comparative activity of ADP-ribosylation factor family members in the early steps of coated vesicle formation on rat liver Golgi membranes. J Biol Chem 272(7):4141-8

Reference Help

Abstract


We have compared the abilities of mammalian ADP-ribosylation factors (ARFs) 1, 5, and 6 and Saccharomyces cerevisiae ARF2 to serve as substrates for the rat liver Golgi membrane guanine nucleotide exchange factor and to initiate the formation of clathrin- and coatomer protein (COP) I-coated vesicles on these membranes. While Golgi membranes stimulated the exchange of GTPgammaS for GDP on all of the ARFs tested, mammalian ARF1 was the best substrate, with an apparent Km of 5 microM. In all cases myristoylation of ARF was required for stimulation. Agents that inhibit the Golgi membrane guanine nucleotide exchange factor (the fungal metabolite brefeldin A and trypsin treatment) selectively inhibited the guanine nucleotide exchange on mammalian ARF1. Taken together, these data indicate that of the ARFs tested, only mammalian ARF1 is activated efficiently by the Golgi guanine nucleotide exchange factor. The other ARFs are activated mainly by another mechanism, possibly phospholipid-mediated. Once activated, all of the membrane-associated, myristoylated ARFs promoted the recruitment of coatomer to about the same extent. Mammalian ARFs 1 and 5 were the most effective in promoting the recruitment of the AP-1 adaptor complex, whereas yeast ARF2 was the least active. These data indicate that the specificity for ARF action on the Golgi membranes is primarily determined by the Golgi guanine nucleotide exchange factor, which has a strong preference for myristoylated mammalian ARF1.

Reference Type
Comparative Study | Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Liang JO, Kornfeld S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference