Reference: Winkler M, et al. (2000) Functional interaction between pleiotropic transactivator pUL69 of human cytomegalovirus and the human homolog of yeast chromatin regulatory protein SPT6. J Virol 74(17):8053-64

Reference Help

Abstract


The phosphoprotein pUL69 of human cytomegalovirus (HCMV), which is a herpesvirus of considerable medical importance in immunosuppressed patients and newborns, has previously been identified as an early-late viral protein that can stimulate several viral and cellular promoters and thus exerts a rather broad activation pattern. To gain insight into the mechanism of this transactivation process, we looked for cellular factors interacting with pUL69 in a yeast two-hybrid screen. Using a B-lymphocyte cDNA library fused to the GAL4 activation domain, we identified 34 clones, 11 of which comprised one distinct gene. Interaction with this gene turned out to be very strong, producing beta-galactosidase levels 100-fold greater than the background as measured in an ONPG (o-nitrophenyl-beta-D-galactopyranoside) assay. Sequencing identified this gene as the human homolog of the yeast factor SPT6, which is thought to be involved in the regulation of chromatin structure. A direct interaction of pUL69 and the carboxy terminus of hSPT6 could be demonstrated using in vitro pull-down experiments. After having generated a specific antiserum that is able to detect the endogenous hSPT6 protein, we were able to observe an in vivo interaction of both proteins by coimmunoprecipitation analysis. The interaction domain within pUL69 was mapped to a central domain of this viral protein that is conserved within the homologous proteins of other herpesviruses such as the ICP27 protein of herpes simplex virus. Internal deletions within this central domain, as well as a single amino acid exchange at position C495, resulted in a loss of interaction. This correlated with a loss of the transactivation potential of the respective mutants, suggesting that the hSPT6 interaction of pUL69 is essential for stimulating gene expression. Furthermore, we demonstrate that the carboxy terminus of hSPT6 also binds to histon H3 and that this interaction can be antagonized by pUL69. This allows the deduction of a model by which pUL69 acts as an antirepressor by competing for binding of histones to hSPT6, thereby antagonizing the chromatin remodeling function of this cellular protein.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Winkler M, aus Dem Siepen T, Stamminger T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference