Reference: Wei H, et al. (2001) Carboxymethylation of the PP2A catalytic subunit in Saccharomyces cerevisiae is required for efficient interaction with the B-type subunits Cdc55p and Rts1p. J Biol Chem 276(2):1570-7

Reference Help

Abstract


Protein phosphatase 2A (PP2A) is an essential eukaryotic serine/threonine phosphatase known to play important roles in cell cycle regulation. Association of different B-type targeting subunits with the heterodimeric core (A/C) enzyme is known to be an important mechanism of regulating PP2A activity, substrate specificity, and localization. However, how the binding of these targeting subunits to the A/C heterodimer might be regulated is unknown. We have used the budding yeast Saccharomyces cerevisiae as a model system to investigate the hypothesis that covalent modification of the C subunit (Pph21p/Pph22p) carboxyl terminus modulates PP2A complex formation. Two approaches were taken. First, S. cerevisiae cells were generated whose survival depended on the expression of different carboxyl-terminal Pph21p mutants. Second, the major S. cerevisiae methyltransferase (Ppm1p) that catalyzes the methylation of the PP2A C subunit carboxyl-terminal leucine was identified, and cells deleted for this methyltransferase were utilized for our studies. Our results demonstrate that binding of the yeast B subunit, Cdc55p, to Pph21p was disrupted by either acidic substitution of potential carboxyl-terminal phosphorylation sites on Pph21p or by deletion of the gene for Ppm1p. Loss of Cdc55p association was accompanied in each case by a large reduction in binding of the yeast A subunit, Tpd3p, to Pph21p. Moreover, decreased Cdc55p and Tpd3p binding invariably resulted in nocodazole sensitivity, a known phenotype of CDC55 or TPD3 deletion. Furthermore, loss of methylation also greatly reduced the association of another yeast B-type subunit, Rts1p. Thus, methylation of Pph21p is important for formation of PP2A trimeric and dimeric complexes, and consequently, for PP2A function. Taken together, our results indicate that methylation and phosphorylation may be mechanisms by which the cell dynamically regulates PP2A complex formation and function.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Wei H, Ashby DG, Moreno CS, Ogris E, Yeong FM, Corbett AH, Pallas DC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference