Reference: Cid A and Serrano R (1988) Mutations of the yeast plasma membrane H+-ATPase which cause thermosensitivity and altered regulation of the enzyme. J Biol Chem 263(28):14134-9

Reference Help

Abstract


Four random mutations of the plasma membrane H+-ATPase of Saccharomyces cerevisiae which result in thermosensitive growth have been sequenced. All of the mutations map in regions conserved by the family of ATPases which form a phosphorylated intermediate. The Gly254----Ser mutation affects a glycine residue conserved in all of the sequenced ATPases. The Thr212----Ile and Ala547----Val mutations do not affect conserved amino acids, but their replacements are not found in any of the sequenced ATPases. Thr212 and Gly254 occur in the proposed phosphatase domain, whereas Ala547 is located within the putative ATP-binding site. The other mutation is a double change (Asp91----Tyr and Glu92----Lys) in the N-terminal domain, in which the altered glutamate is conserved in fungal and protozoan H+-ATPases. Proton efflux from whole cells and ATP hydrolysis by purified plasma membranes are more thermolabile in cells carrying the ATPase mutations than in wild-type yeast. Therefore, the defects in growth and proton transport at the nonpermissive temperature can be attributed to impairment of ATPase activity. Incubation of wild-type yeast cells with glucose before homogenization induces changes in the specific activity, Km, pH optimum, and vanadate sensitivity of the plasma membrane ATPase. The Ala547----Val mutation results in an enzyme from starved cells with the kinetic parameters of the glucose-activated wild-type ATPase. Therefore, a single amino acid change mimics the poorly understood regulatory mechanism triggered by glucose.

Reference Type
Journal Article
Authors
Cid A, Serrano R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference