Sayas E, et al. (2019) Polyamines interfere with protein ubiquitylation and cause depletion of intracellular amino acids: a possible mechanism for cell growth inhibition. FEBS Lett 593(2):209-218 PMID:30447065
Caballero-Molada M, et al. (2018) The Gcn2-eIF2α pathway connects iron and amino acid homeostasis in Saccharomyces cerevisiae. Biochem J 475(8):1523-1534 PMID:29626156
Porcel R, et al. (2018) BvCOLD1: A novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant Cell Environ 41(12):2844-2857 PMID:30103284
Mahmoud S, et al. (2017) TOR complex 1 regulates the yeast plasma membrane proton pump and pH and potassium homeostasis. FEBS Lett 591(13):1993-2002 PMID:28486745
González S, et al. (2016) Nucleosomal signatures impose nucleosome positioning in coding and noncoding sequences in the genome. Genome Res 26(11):1532-1543 PMID:27662899
Sayas E, et al. (2015) Toxicity, mutagenicity and transport in Saccharomyces cerevisiae of three popular DNA intercalating fluorescent dyes. Yeast 32(9):595-606 PMID:26108459
Vicent I, et al. (2015) Uptake of inorganic phosphate is a limiting factor for Saccharomyces cerevisiae during growth at low temperatures. FEMS Yeast Res 15(3) PMID:25725023
Fasano R, et al. (2014) Role of Arabidopsis UV RESISTANCE LOCUS 8 in plant growth reduction under osmotic stress and low levels of UV-B. Mol Plant 7(5):773-91 PMID:24413416
Ríos G, et al. (2013) Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Res 13(1):97-106 PMID:23106982
Casamayor A, et al. (2012) The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress. Biochem J 444(1):39-49 PMID:22372618
Merchan S, et al. (2011) Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae. Genes Cells 16(2):152-65 PMID:21143561
Casado C, et al. (2010) Regulation of Trk-dependent potassium transport by the calcineurin pathway involves the Hal5 kinase. FEBS Lett 584(11):2415-20 PMID:20412803
Hoeberichts FA, et al. (2010) The role of K(+) and H(+) transport systems during glucose- and H(2)O(2)-induced cell death in Saccharomyces cerevisiae. Yeast 27(9):713-25 PMID:20213854
Pérez-Valle J, et al. (2010) Hal4 and Hal5 protein kinases are required for general control of carbon and nitrogen uptake and metabolism. Eukaryot Cell 9(12):1881-90 PMID:20952580
Ruiz A, et al. (2009) Moonlighting proteins Hal3 and Vhs3 form a heteromeric PPCDC with Ykl088w in yeast CoA biosynthesis. Nat Chem Biol 5(12):920-8 PMID:19915539
Ruiz A, et al. (2008) Direct regulation of genes involved in glucose utilization by the calcium/calcineurin pathway. J Biol Chem 283(20):13923-33 PMID:18362157
Pagani MA, et al. (2007) Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study. Mol Microbiol 65(2):521-37 PMID:17630978
Pérez-Valle J, et al. (2007) Key role for intracellular K+ and protein kinases Sat4/Hal4 and Hal5 in the plasma membrane stabilization of yeast nutrient transporters. Mol Cell Biol 27(16):5725-36 PMID:17548466
González A, et al. (2006) Transcriptional profiling of the protein phosphatase 2C family in yeast provides insights into the unique functional roles of Ptc1. J Biol Chem 281(46):35057-69 PMID:16973600
Platara M, et al. (2006) The transcriptional response of the yeast Na(+)-ATPase ENA1 gene to alkaline stress involves three main signaling pathways. J Biol Chem 281(48):36632-42 PMID:17023428
Serrano R, et al. (2006) Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J Biol Chem 281(52):39785-95 PMID:17088254
Portillo F, et al. (2005) A role for the non-phosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport. FEBS Lett 579(2):512-6 PMID:15642368
Yenush L, et al. (2005) pH-Responsive, posttranslational regulation of the Trk1 potassium transporter by the type 1-related Ppz1 phosphatase. Mol Cell Biol 25(19):8683-92 PMID:16166647
Merchan S, et al. (2004) Response of the Saccharomyces cerevisiae Mpk1 mitogen-activated protein kinase pathway to increases in internal turgor pressure caused by loss of Ppz protein phosphatases. Eukaryot Cell 3(1):100-7 PMID:14871941
Mulet JM, et al. (2004) Expression of a plant serine O-acetyltransferase in Saccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast 21(4):303-12 PMID:15042590
Mulet JM, et al. (2004) The trehalose pathway and intracellular glucose phosphates as modulators of potassium transport and general cation homeostasis in yeast. Yeast 21(7):569-82 PMID:15164360
Ruiz A, et al. (2004) Functional characterization of the Saccharomyces cerevisiae VHS3 gene: a regulatory subunit of the Ppz1 protein phosphatase with novel, phosphatase-unrelated functions. J Biol Chem 279(33):34421-30 PMID:15192104
Serrano R, et al. (2004) Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment. J Biol Chem 279(19):19698-704 PMID:14993228
Viladevall L, et al. (2004) Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. J Biol Chem 279(42):43614-24 PMID:15299026
Ellul P, et al. (2003) The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Theor Appl Genet 107(3):462-9 PMID:12783167
Navarro-Aviñó JP, et al. (2003) Yeast inositol mono- and trisphosphate levels are modulated by inositol monophosphatase activity and nutrients. Biochem Biophys Res Commun 302(1):41-5 PMID:12593845
Rausell A, et al. (2003) The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. Plant J 34(3):257-67 PMID:12713533
Forment J, et al. (2002) The yeast SR protein kinase Sky1p modulates salt tolerance, membrane potential and the Trk1,2 potassium transporter. Biochim Biophys Acta 1565(1):36-40 PMID:12225850
Forment J, et al. (2002) Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. Plant J 30(5):511-9 PMID:12047626
Goossens A, et al. (2002) Involvement of Nst1p/YNL091w and Msl1p, a U2B'' splicing factor, in Saccharomyces cerevisiae salt tolerance. Yeast 19(3):193-202 PMID:11816027
Serrano R, et al. (2002) The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Mol Microbiol 46(5):1319-33 PMID:12453218
Yenush L, et al. (2002) The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. EMBO J 21(5):920-9 PMID:11867520
Ali R, et al. (2001) Identification of Candida tropicalis HSR1, a gene of the heat-shock factor-related family, which confers salt tolerance in Saccharomyces cerevisiae. Yeast 18(7):605-10 PMID:11329171
Kanhonou R, et al. (2001) A catalytic subunit of the sugar beet protein kinase CK2 is induced by salt stress and increases NaCl tolerance in Saccharomyces cerevisiae. Plant Mol Biol 47(5):571-9 PMID:11725943
Mendizabal I, et al. (2001) Promoter sequences regulated by the calcineurin-activated transcription factor Crz1 in the yeast ENA1 gene. Mol Genet Genomics 265(5):801-11 PMID:11523797
Pascual-Ahuir A, et al. (2001) Multiple levels of control regulate the yeast cAMP-response element-binding protein repressor Sko1p in response to stress. J Biol Chem 276(40):37373-8 PMID:11500510
Pascual-Ahuir A, et al. (2001) The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae. Mol Cell Biol 21(1):16-25 PMID:11113177
Proft M, et al. (2001) Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO J 20(5):1123-33 PMID:11230135
Rep M, et al. (2001) The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol 40(5):1067-83 PMID:11401713
Albert A, et al. (2000) The X-ray structure of the FMN-binding protein AtHal3 provides the structural basis for the activity of a regulatory subunit involved in signal transduction. Structure 8(9):961-9 PMID:10986463
Albert A, et al. (2000) X-ray structure of yeast Hal2p, a major target of lithium and sodium toxicity, and identification of framework interactions determining cation sensitivity. J Mol Biol 295(4):927-38 PMID:10656801
Goossens A, et al. (2000) Regulation of yeast H(+)-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol 20(20):7654-61 PMID:11003661
Lopez F, et al. (1999) The yeast inositol monophosphatase is a lithium- and sodium-sensitive enzyme encoded by a non-essential gene pair. Mol Microbiol 31(4):1255-64 PMID:10096091
Mulet JM, et al. (1999) A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter. Mol Cell Biol 19(5):3328-37 PMID:10207057
Navarro-Aviño JP, et al. (1999) A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast 15(10A):829-42 PMID:10407263
Proft M and Serrano R (1999) Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol Cell Biol 19(1):537-46 PMID:9858577
Márquez JA, et al. (1998) The Ssn6-Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and -independent genes. EMBO J 17(9):2543-53 PMID:9564037
de Nadal E, et al. (1998) The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proc Natl Acad Sci U S A 95(13):7357-62 PMID:9636153
Bordas M, et al. (1997) Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro evaluation of salt tolerance. Transgenic Res 6(1):41-50 PMID:9032977
Rios G, et al. (1997) Mechanisms of salt tolerance conferred by overexpression of the HAL1 gene in Saccharomyces cerevisiae. Yeast 13(6):515-28 PMID:9178503
Márquez JA and Serrano R (1996) Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast. FEBS Lett 382(1-2):89-92 PMID:8612770
Rodriguez PL, et al. (1996) CtCdc55p and CtHa13p: two putative regulatory proteins from Candida tropicalis with long acidic domains. Yeast 12(13):1321-9 PMID:8923737
Ferrando A, et al. (1995) Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Mol Cell Biol 15(10):5470-81 PMID:7565698
Miralles VJ and Serrano R (1995) A genomic locus in Saccharomyces cerevisiae with four genes up-regulated by osmotic stress. Mol Microbiol 17(4):653-62 PMID:8801420
Gläser HU, et al. (1993) Salt tolerance and methionine biosynthesis in Saccharomyces cerevisiae involve a putative phosphatase gene. EMBO J 12(8):3105-10 PMID:8393782
Serrano R, et al. (1993) Epitope mapping and accessibility of immunodominant regions of yeast plasma membrane H(+)-ATPase. Eur J Biochem 212(3):737-44 PMID:7681777
Gaxiola R, et al. (1992) A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. EMBO J 11(9):3157-64 PMID:1505513
Monk BC, et al. (1991) Immunological approaches to the transmembrane topology and conformational changes of the carboxyl-terminal regulatory domain of yeast plasma membrane H(+)-ATPase. J Biol Chem 266(27):18097-103 PMID:1833392
Portillo F, et al. (1991) Analysis of the regulatory domain of yeast plasma membrane H+-ATPase by directed mutagenesis and intragenic suppression. FEBS Lett 287(1-2):71-4 PMID:1831768
Serrano R and Portillo F (1990) Catalytic and regulatory sites of yeast plasma membrane H(+)-ATPase studied by directed mutagenesis. Biochim Biophys Acta 1018(2-3):195-9 PMID:2144186
Pardo JM and Serrano R (1989) Structure of a plasma membrane H+-ATPase gene from the plant Arabidopsis thaliana. J Biol Chem 264(15):8557-62 PMID:2524481
Portillo F, et al. (1989) Deletion analysis of yeast plasma membrane H+-ATPase and identification of a regulatory domain at the carboxyl-terminus. FEBS Lett 247(2):381-5 PMID:2523820
Cid A and Serrano R (1988) Mutations of the yeast plasma membrane H+-ATPase which cause thermosensitivity and altered regulation of the enzyme. J Biol Chem 263(28):14134-9 PMID:2902079
Portillo F and Serrano R (1988) Dissection of functional domains of the yeast proton-pumping ATPase by directed mutagenesis. EMBO J 7(6):1793-8 PMID:2901955
Serrano R (1988) H+-ATPase from plasma membranes of Saccharomyces cerevisiae and Avena sativa roots: purification and reconstitution. Methods Enzymol 157:533-44 PMID:2906717
Cid A, et al. (1987) Replacement of the promoter of the yeast plasma membrane ATPase gene by a galactose-dependent promoter and its physiological consequences. Curr Genet 12(2):105-10 PMID:2966684
Serrano R, et al. (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature 319(6055):689-93 PMID:3005867
Malpartida F and Serrano R (1981) Reconstitution of the proton-translocating adenosine triphosphatase of yeast plasma membranes. J Biol Chem 256(9):4175-7 PMID:6163779