Reference: Germann M, et al. (2005) Characterizing the sphingolipid signaling pathway that remediates defects associated with loss of the yeast amphiphysin-like orthologs, Rvs161p and Rvs167p. J Biol Chem 280(6):4270-8

Reference Help

Abstract


Loss of function of either the RVS161 or RVS167 Saccharomyces cerevisiae amphiphysin-like gene confers similar growth phenotypes that can be suppressed by mutations in sphingolipid biosynthesis. We performed a yeast two-hybrid screen using Rvs161p as bait to uncover proteins involved in this sphingolipid-dependent suppressor pathway. In the process, we have demonstrated a direct physical interaction between Rvs167p and the two-hybrid interacting proteins, Acf2p, Gdh3p, and Ybr108wp, while also elucidating the Rvs167p amino acid domains to which these proteins bind. By using subcellular fractionation, we demonstrate that Rvs167p, Ybr108wp, Gdh3p, and Acf2p all localize to Rvs161p-containing lipid rafts, thus placing them within a single compartment that should facilitate their interactions. Moreover, our results suggest that Acf2p and Gdh3p functions are needed for suppressor pathway activity. To determine pathway mechanisms further, we examined the localization of Rvs167p in suppressor mutants. These studies reveal roles for Rvs161p and the very long chain fatty acid elongase, Sur4p, in the localization and/or stability of Rvs167p. Previous yeast studies showed that rvs defects could be suppressed by changes in sphingolipid metabolism brought about by deleting SUR4 (Desfarges, L., Durrens, P., Juguelin, H., Cassagne, C., Bonneu, M., and Aigle, M. (1993) Yeast 9, 267-277). Using rvs167 sur4 and rvs161 sur4 double null cells as models to study suppressor pathway activity, we demonstrate that loss of SUR4 does not remediate the steady-state actin cytoskeletal defects of rvs167 or rvs161 cells. Moreover, suppressor activity does not require the function of the actin-binding protein, Abp1p, or Sla1p, a protein that is thought to regulate assembly of the cortical actin cytoskeleton. Based on our results, we suggest that sphingolipid-dependent suppression of rvs defects may not work entirely through regulating changes in actin organization.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Germann M, Swain E, Bergman L, Nickels JT
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference