Reference: Colombo S, et al. (2004) Design and characterization of a new class of inhibitors of ras activation. Ann N Y Acad Sci 1030:52-61

Reference Help

Abstract


The Ras proteins, which regulate intracellular signaling by a cyclic process involving interconversion between active GTP-bound and inactive GDP-bound states, play an essential role in controlling the activity of several crucial signaling pathways regulating normal cellular proliferation. Mutational activation of RAS genes can induce cancer in humans and other mammals. About 30% of human tumors contain an altered oncogenic Ras; therefore, inhibitors of Ras activation are potentially antineoplastic drugs. In this work we describe original molecules acting as Ras inhibitors. Recently a new class of inhibitors of the Ras nucleotide exchange process was described by Taveras et al. These molecules are able to form a noncovalent complex with Ras-GDP, inhibiting the GDP-GTP nucleotide exchange. We synthesized molecule SCH-53870 and we found that it inhibits p21-hRas nucleotide exchange in vitro, but it has very low solubility in water and undergoes rapid degradation at room temperature when dissolved in water-DMSO mixtures. This chemical instability could prejudice pharmacological activity in vivo. With the aim to improve solubility and chemical stability, we designed and synthesized other original bioactive molecules that have been characterized in vitro using purified human and yeast Ras proteins and in vivo using suitable Saccharomyces cerevisiae strains. In the long term we hope that the knowledge we derive from these compounds will help in the development of an alternative therapy targeting Ras for a specific inhibition of transformed cell proliferation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Colombo S, Peri F, Tisi R, Nicotra F, Martegani E
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference