Reference: Dimitrov LN, et al. (2009) Polymorphisms in multiple genes contribute to the spontaneous mitochondrial genome instability of Saccharomyces cerevisiae S288C strains. Genetics 183(1):365-83

Reference Help

Abstract


The mitochondrial genome (mtDNA) is required for normal cellular function; inherited and somatic mutations in mtDNA lead to a variety of diseases. Saccharomyces cerevisiae has served as a model to study mtDNA integrity, in part because it can survive without mtDNA. A measure of defective mtDNA in S. cerevisiae is the formation of petite colonies. The frequency at which spontaneous petite colonies arise varies by approximately 100-fold between laboratory and natural isolate strains. To determine the genetic basis of this difference, we applied quantitative trait locus (QTL) mapping to two strains at the opposite extremes of the phenotypic spectrum: the widely studied laboratory strain S288C and the vineyard isolate RM11-1a. Four main genetic determinants explained the phenotypic difference. Alleles of SAL1, CAT5, and MIP1 contributed to the high petite frequency of S288C and its derivatives by increasing the formation of petite colonies. By contrast, the S288C allele of MKT1 reduced the formation of petite colonies and compromised the growth of petite cells. The former three alleles were found in the EM93 strain, the founder that contributed approximately 88% of the S288C genome. Nearly all of the phenotypic difference between S288C and RM11-1a was reconstituted by introducing the common alleles of these four genes into the S288C background. In addition to the nuclear gene contribution, the source of the mtDNA influenced its stability. These results demonstrate that a few rare genetic variants with individually small effects can have a profound phenotypic effect in combination. Moreover, the polymorphisms identified in this study open new lines of investigation into mtDNA maintenance.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Dimitrov LN, Brem RB, Kruglyak L, Gottschling DE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference