Reference: Liu X and Rattray M (2010) Including probe-level measurement error in robust mixture clustering of replicated microarray gene expression. Stat Appl Genet Mol Biol 9:Article42

Reference Help

Abstract


Probabilistic mixture models provide a popular approach to cluster noisy gene expression data for exploring gene function. Since gene expression data obtained from microarray experiments are often associated with significant sources of technical and biological noise, replicated experiments are typically used to deal with data variability, and internal replication (e.g. from multiple probes per gene in an experiment) provides valuable information about technical sources of noise. However, current implementations of mixture models either do not consider the correlation between the replicated measurements for the same experimental condition, or ignore the probe-level measurement error, and thus overlook the rich information about technical noise. Moreover, most current methods use non-robust Gaussian components to describe the data, and these methods are therefore sensitive to non-Gaussian clusters and outliers. In many cases, this will lead to over-estimation of the number of model components as multiple Gaussian components are used to fit a non-Gaussian cluster. We propose a robust Student's t-mixture model, which explicitly handles replicated gene expression data, includes the consideration of probe-level measurement error when available and automatically selects the appropriate number of model components using a minimum message length criterion. We apply the model to gene expression data using probe-level measurements from an Affymetrix probe-level model, multi-mgMOS, which provides uncertainty estimates. The proposed Student's t-mixture model shows robust performance on synthetic data sets with realistic noise characteristics in comparison to a standard Gaussian mixture model and two other previously published methods. We also compare performance with these methods on two yeast time-course data sets and show that the new method obtains more biologically meaningful clusters in terms of enrichment statistics for GO categories and interactions between transcription factors and genes. Automatically selecting the number of components is more computationally efficient than using a model selection approach and allows the methods to be applied to larger data sets.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Liu X, Rattray M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference