Reference: Zhao H, et al. (2016) Identifying Multi-Dimensional Co-Clusters in Tensors Based on Hyperplane Detection in Singular Vector Spaces. PLoS One 11(9):e0162293

Reference Help

Abstract


Co-clustering, often called biclustering for two-dimensional data, has found many applications, such as gene expression data analysis and text mining. Nowadays, a variety of multi-dimensional arrays (tensors) frequently occur in data analysis tasks, and co-clustering techniques play a key role in dealing with such datasets. Co-clusters represent coherent patterns and exhibit important properties along all the modes. Development of robust co-clustering techniques is important for the detection and analysis of these patterns. In this paper, a co-clustering method based on hyperplane detection in singular vector spaces (HDSVS) is proposed. Specifically in this method, higher-order singular value decomposition (HOSVD) transforms a tensor into a core part and a singular vector matrix along each mode, whose row vectors can be clustered by a linear grouping algorithm (LGA). Meanwhile, hyperplanar patterns are extracted and successfully supported the identification of multi-dimensional co-clusters. To validate HDSVS, a number of synthetic and biological tensors were adopted. The synthetic tensors attested a favorable performance of this algorithm on noisy or overlapped data. Experiments with gene expression data and lineage data of embryonic cells further verified the reliability of HDSVS to practical problems. Moreover, the detected co-clusters are well consistent with important genetic pathways and gene ontology annotations. Finally, a series of comparisons between HDSVS and state-of-the-art methods on synthetic tensors and a yeast gene expression tensor were implemented, verifying the robust and stable performance of our method.

Reference Type
Journal Article
Authors
Zhao H, Wang DD, Chen L, Liu X, Yan H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference