Reference: Xu B, et al. (2018) Protein complexes identification based on go attributed network embedding. BMC Bioinformatics 19(1):535

Reference Help

Abstract


Background: Identifying protein complexes from protein-protein interaction (PPI) network is one of the most important tasks in proteomics. Existing computational methods try to incorporate a variety of biological evidences to enhance the quality of predicted complexes. However, it is still a challenge to integrate different types of biological information into the complexes discovery process under a unified framework. Recently, attributed network embedding methods have be proved to be remarkably effective in generating vector representations for nodes in the network. In the transformed vector space, both the topological proximity and node attributed affinity between different nodes are preserved. Therefore, such attributed network embedding methods provide us a unified framework to integrate various biological evidences into the protein complexes identification process.

Results: In this article, we propose a new method called GANE to predict protein complexes based on Gene Ontology (GO) attributed network embedding. Firstly, it learns the vector representation for each protein from a GO attributed PPI network. Based on the pair-wise vector representation similarity, a weighted adjacency matrix is constructed. Secondly, it uses the clique mining method to generate candidate cores. Consequently, seed cores are obtained by ranking candidate cores based on their densities on the weighted adjacency matrix and removing redundant cores. For each seed core, its attachments are the proteins with correlation score that is larger than a given threshold. The combination of a seed core and its attachment proteins is reported as a predicted protein complex by the GANE algorithm. For performance evaluation, we compared GANE with six protein complex identification methods on five yeast PPI networks. Experimental results showes that GANE performs better than the competing algorithms in terms of different evaluation metrics.

Conclusions: GANE provides a framework that integrate many valuable and different biological information into the task of protein complex identification. The protein vector representation learned from our attributed PPI network can also be used in other tasks, such as PPI prediction and disease gene prediction.

Reference Type
Journal Article
Authors
Xu B, Li K, Zheng W, Liu X, Zhang Y, Zhao Z, He Z
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference