Reference: Bonomelli B, et al. (2020) Lack of SNF1 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 523(1):130-134

Reference Help

Abstract


In previous papers we showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type yeast cells growing exponentially on glucose, while an aberrant accumulation of activated Ras in mitochondria correlated to mitochondrial dysfunction, accumulation of ROS and regulated cell death. Here we show that also in a strain lacking Snf1, the homolog of the AMP-activated protein kinase (AMPK) in Saccharomyces cerevisiae, activated Ras proteins accumulate mainly in these organelles, suggesting an antiapoptotic role for this protein, beside its well-known function in glucose repression. Indeed, in this paper we show that Snf1 protects against apoptosis in Saccharomyces cerevisiae. In particular, following treatment with acetic acid, a well-known inducer of apoptosis in this microorganism, snf1Δ cells show a significant reduction in cell survival and a higher level of ROS when compared with wild-type cells. More importantly, untreated snf1Δ cells show a higher percentage of apoptotic cells compared with wild-type cells, which further increases upon treatment with acetic acid. In order to determine whether the role of Snf1 in regulated cell death is dependent on its catalytic activity, we characterized the Snf1-S214E strain, expressing a catalytically inactive form of Snf1. Data on active Ras proteins localization, cell survival, level of ROS and percentage of apoptotic cells are congruent and suggest that the antiapoptotic role of Snf1 is independent on its kinase activity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Bonomelli B, Martegani E, Colombo S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference