Reference: Wang C, et al. (2022) Model-driven design of synthetic N-terminal coding sequences for regulating gene expression in yeast and bacteria. Biotechnol J 17(5):e2100655

Reference Help

Abstract


N-terminal coding sequences (NCSs) are key regulatory elements for fine-tuning gene expression during translation initiation-the rate-limiting step of translation. However, owing to the complex combinatory effects of NCS biophysical factors and endogenous regulation, designing NCSs remains challenging. In this study, a multi-view learning strategy for model-driven generation of synthetic NCSs for Saccharomyces cerevisiae and Bacillus subtilis are implemented, which are widely used in laboratories and industries. NCS libraries for S. cerevisiae and B. subtilis with nearly 150,000 cells were sorted. Next, model training was performed with NCS deep features extracted from DNA, codon, and amino acid sequences, as well as calculated features from the minimum free energy (MFE) and tRNA adaption index. Two models were separately developed for generating synthetic NCSs for both up- and down-regulating gene expression with accuracies higher than 65% for S. cerevisiae and B. subtilis. Synthetic NCSs were then applied to enhance bioproduction, yielding 1.48- and 1.71-fold production improvements of D-limonene by S. cerevisiae and ovalbumin by B. subtilis, respectively. This work provides model-driven design of synthetic NCSs as a toolbox for regulating gene expression in S. cerevisiae and B. subtilis. The machine learning-based modeling approach can be used for NCS design in other microorganisms.

Reference Type
Journal Article
Authors
Wang C, Zhang W, Tian R, Zhang J, Zhang L, Deng Z, Lv X, Li J, Liu L, Du G, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference