Du G, et al. (2025) The relationship mammalian p38 with human health and its homolog Hog1 in response to environmental stresses in Saccharomyces cerevisiae. Front Cell Dev Biol 13:1522294 PMID:40129568
Guo B, et al. (2025) Adaptively Evolved and Multiplexed Engineered Saccharomyces cerevisiae for Neutralizer-Free Production of l-Lactic Acid. J Agric Food Chem PMID:40191959
Jin K, et al. (2025) Light-induced programmable solid-liquid phase transition of biomolecular condensates for improved biosynthesis. Trends Biotechnol PMID:40082181
Lin P, et al. (2025) Construction of Saccharomyces cerevisiae Platform Strain for the Biosynthesis of Carotenoids and Apocarotenoids. J Agric Food Chem PMID:40168627
Liu F, et al. (2025) Efficient synthesis of high-active multi-subunit hemoglobins through balanced expression of globins and robust heme-supply in Saccharomyces cerevisiae. Bioresour Technol 426:132387 PMID:40081771
Liu J, et al. (2025) Multiplexed engineering of cytochrome P450 enzymes for promoting terpenoid synthesis in Saccharomyces cerevisiae cell factories: A review. Biotechnol Adv 81:108560 PMID:40068711
Liu Y, et al. (2025) Improving Cellular Protein Content of Saccharomyces cerevisiae Based on Adaptive Evolution and Flow Cytometry-Aided High Throughput Screening. J Agric Food Chem 73(1):706-717 PMID:39723951
Dong X, et al. (2024) Modification of the Endoplasmic Reticulum to Enhance Ovalbumin Secretion in Saccharomyces cerevisiae. J Agric Food Chem 72(36):19985-19993 PMID:39207302
Liu F, et al. (2024) Efficient biosynthesis of active hemoglobins through enhancing the import of heme in Saccharomyces cerevisiae. FEBS J 291(16):3737-3748 PMID:38865576
Xiu X, et al. (2024) Hyperproduction of 7-dehydrocholesterol by rewiring the post-squalene module in lipid droplets of Saccharomyces cerevisiae. Metab Eng 86:147-156 PMID:39374893
Ye Z, et al. (2024) Efficient 7-Dehydrocholesterol Production by Multiple Metabolic Engineering of Diploid Saccharomyces cerevisiae. J Agric Food Chem 72(45):25186-25196 PMID:39480248
Jin K, et al. (2023) Combinatorial metabolic engineering enables the efficient production of ursolic acid and oleanolic acid in Saccharomyces cerevisiae. Bioresour Technol 374:128819 PMID:36868430
Kong X, et al. (2023) Efficient Synthesis of Limonene in Saccharomyces cerevisiae Using Combinatorial Metabolic Engineering Strategies. J Agric Food Chem 71(20):7752-7764 PMID:37189018
Lei Q, et al. (2023) Efficient expression of a cytokine combination in Saccharomyces cerevisiae for cultured meat production. Food Res Int 170:113017 PMID:37316083
Liu J, et al. (2023)In Silico Prediction and Mining of Exporters for Secretory Bioproduction of Terpenoids in Saccharomyces cerevisiae. ACS Synth Biol 12(3):863-876 PMID:36867848
Liu T, et al. (2023) Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae. Bioresour Technol 379:129023 PMID:37028528
Lv X, et al. (2023) Analysis of acid-tolerance mechanism based on membrane microdomains in Saccharomyces cerevisiae. Microb Cell Fact 22(1):180 PMID:37700284
Lv X, et al. (2023) CRISPR genetic toolkits of classical food microorganisms: Current state and future prospects. Biotechnol Adv 69:108261 PMID:37741424
Sun L, et al. (2023) Highly efficient neutralizer-free l-malic acid production using engineered Saccharomyces cerevisiae. Bioresour Technol 370:128580 PMID:36608859
Wu Y, et al. (2023) Enhanced Ribonucleic Acid Production by High-Throughput Screening Based on Fluorescence Activation and Transcriptomic-Guided Fermentation Optimization in Saccharomyces cerevisiae. J Agric Food Chem 71(17):6673-6680 PMID:37071119
Xue J, et al. (2023) Systematic engineering of Saccharomyces cerevisiae for efficient synthesis of hemoglobins and myoglobins. Bioresour Technol 370:128556 PMID:36586429
Zhao X, et al. (2023) Stepwise Optimization of Inducible Expression System for the Functional Secretion of Horseradish Peroxidase in Saccharomyces cerevisiae. J Agric Food Chem 71(9):4059-4068 PMID:36821527
Ren M, et al. (2022) Involvement of the High-Osmolarity Glycerol Pathway of Saccharomyces Cerevisiae in Protection against Copper Toxicity. Antioxidants (Basel) 11(2) PMID:35204083
Wang C, et al. (2022) Model-driven design of synthetic N-terminal coding sequences for regulating gene expression in yeast and bacteria. Biotechnol J 17(5):e2100655 PMID:35072976
Wang S, et al. (2022) Construction and Optimization of the de novo Biosynthesis Pathway of Mogrol in Saccharomyces Cerevisiae. Front Bioeng Biotechnol 10:919526 PMID:35711645
Xiu X, et al. (2022) Modular remodeling of sterol metabolism for overproduction of 7-dehydrocholesterol in engineered yeast. Bioresour Technol 360:127572 PMID:35792326
Liu X, et al. (2021) Inactivation effects and mechanisms of plasma-activated water combined with sodium laureth sulfate (SLES) against Saccharomyces cerevisiae. Appl Microbiol Biotechnol 105(7):2855-2865 PMID:33738554
Zhang C, et al. (2021) [Current status and future perspectives of metabolic network models of industrial microorganisms]. Sheng Wu Gong Cheng Xue Bao 37(3):860-873 PMID:33783155
Liu Y, et al. (2020) Towards next-generation model microorganism chassis for biomanufacturing. Appl Microbiol Biotechnol 104(21):9095-9108 PMID:32970182
Wu Y, et al. (2020) Applications of CRISPR in a Microbial Cell Factory: From Genome Reconstruction to Metabolic Network Reprogramming. ACS Synth Biol 9(9):2228-2238 PMID:32794766
Gao Y, et al. (2019) Antioxidant Activity Evaluation of Dietary Flavonoid Hyperoside Using Saccharomyces Cerevisiae as a Model. Molecules 24(4) PMID:30813233
Ge F, et al. (2018) Recent advances in enhanced enzyme activity, thermostability and secretion by N-glycosylation regulation in yeast. Biotechnol Lett 40(5):847-854 PMID:29450673
Liu J, et al. (2018) Synergistic Rewiring of Carbon Metabolism and Redox Metabolism in Cytoplasm and Mitochondria of Aspergillus oryzae for Increased l-Malate Production. ACS Synth Biol 7(9):2139-2147 PMID:30092627
Romero AM, et al. (2018) Phosphorylation and Proteasome Recognition of the mRNA-Binding Protein Cth2 Facilitates Yeast Adaptation to Iron Deficiency. mBio 9(5) PMID:30228242
Wang M, et al. (2018) Antioxidant Protection of Nobiletin, 5-Demethylnobiletin, Tangeretin, and 5-Demethyltangeretin from Citrus Peel in Saccharomyces cerevisiae. J Agric Food Chem 66(12):3155-3160 PMID:29526093
Zhang W, et al. (2018) Complete genome sequence and analysis of the industrial Saccharomyces cerevisiae strain N85 used in Chinese rice wine production. DNA Res 25(3):297-306 PMID:29415277
Zhang W, et al. (2018) Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 82(1) PMID:29436478
Zhang J, et al. (2017) Evaluation and application of constitutive promoters for cutinase production by Saccharomyces cerevisiae. J Microbiol 55(7):538-544 PMID:28664516
Zhang P, et al. (2017) Mutant Potential Ubiquitination Sites in Dur3p Enhance the Urea and Ethyl Carbamate Reduction in a Model Rice Wine System. J Agric Food Chem 65(8):1641-1648 PMID:28185458
Hu Q, et al. (2016) The Exonuclease Homolog OsRAD1 Promotes Accurate Meiotic Double-Strand Break Repair by Suppressing Nonhomologous End Joining. Plant Physiol 172(2):1105-1116 PMID:27512017
Zhang P, et al. (2016) Genome-wide mapping of nucleosome positions in Saccharomyces cerevisiae in response to different nitrogen conditions. Sci Rep 6:33970 PMID:27659668
Zhang P, et al. (2016) [Ubiquitination regulation of histidine transporter Hip1p on histidine utilization in Saccharomyces cerevisiae]. Wei Sheng Wu Xue Bao 56(10):1544-50 PMID:29741343
Zhao X, et al. (2016) The modification of Gat1p in nitrogen catabolite repression to enhance non-preferred nitrogen utilization in Saccharomyces cerevisiae. Sci Rep 6:21603 PMID:26899143
Li Y, et al. (2015) [Effects of transporter Agp1p ubiquitination on nitrogen utilization in Saccharomyces cerevisiae]. Wei Sheng Wu Xue Bao 55(5):570-8 PMID:26259481
Yin X, et al. (2015) Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects. Biotechnol Adv 33(6 Pt 1):830-41 PMID:25902192
Zhao S, et al. (2014) Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources. J Proteomics 101:102-12 PMID:24530623
Zhao X, et al. (2014) Metabolic engineering of the regulators in nitrogen catabolite repression to reduce the production of ethyl carbamate in a model rice wine system. Appl Environ Microbiol 80(1):392-8 PMID:24185848
Liu J, et al. (2013) Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress. Appl Microbiol Biotechnol 97(14):6467-75 PMID:23644769
Lv Y, et al. (2013) A simple procedure for protein ubiquitination detection in Saccharomyces cerevisiae: Gap1p as an example. J Microbiol Methods 94(1):25-9 PMID:23611841
Sun M, et al. (2013) [Regulation of isoprenoid pathway for enhanced production of linalool in Saccharomyces cerevisiae]. Sheng Wu Gong Cheng Xue Bao 29(6):751-9 PMID:24063235
Hu F, et al. (2012) Key cytomembrane ABC transporters of Saccharomyces cerevisiae fail to improve the tolerance to D-limonene. Biotechnol Lett 34(8):1505-9 PMID:22526424
Wang T, et al. (2012) Available methods for assembling expression cassettes for synthetic biology. Appl Microbiol Biotechnol 93(5):1853-63 PMID:22311648
Yin X, et al. (2012) Enhanced alpha-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by regulation of the pyruvate carboxylation pathway. Appl Microbiol Biotechnol 96(6):1527-37 PMID:22678027
Zhou J, et al. (2012) Enhanced α-ketoglutarate production in Yarrowia lipolytica WSH-Z06 by alteration of the acetyl-CoA metabolism. J Biotechnol 161(3):257-64 PMID:22789476
Zhao L, et al. (2011) [Modification of carbon flux in Sacchromyces cerevisiae to improve L-lactic acid production]. Wei Sheng Wu Xue Bao 51(1):50-8 PMID:21465789
Chen F, et al. (2010) [Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae]. Wei Sheng Wu Xue Bao 50(9):1172-9 PMID:21090257
Liang N, et al. (2008) [Enhancing alpha-ketoglutaric acid production in Torulopsis glabrata: increase of acetyl-CoA availability]. Wei Sheng Wu Xue Bao 48(7):874-8 PMID:18837363
Liao X, et al. (2008) Enhancement of glutathione production by altering adenosine metabolism of Escherichia coli in a coupled ATP regeneration system with Saccharomyces cerevisiae. J Appl Microbiol 104(2):345-52 PMID:18194260