Yeast cells suffer from continuous and long-term thermal stress during high-temperature ethanol fermentation. Understanding the mechanism of yeast thermotolerance is important not only for studying microbial stress biology in basic research but also for developing thermotolerant strains for industrial application. Here, we compared the effects of 23 transcription factor (TF) deletions on high-temperature ethanol fermentation and cell survival after heat shock treatment and identified three core TFs, Sin3p, Srb2p and Mig1p, that are involved in regulating the response to long-term thermotolerance. Further analyses of comparative transcriptome profiling of the core TF deletions and transcription regulatory associations revealed a hierarchical transcriptional regulatory network centered on these three TFs. This global transcriptional regulatory network provided a better understanding of the regulatory mechanism behind long-term thermal stress tolerance as well as potential targets for transcriptome engineering to improve the performance of high-temperature ethanol fermentation by an industrial Saccharomyces cerevisiae strain.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Source | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Dataset | Description | Keywords | Number of Conditions |
---|---|---|---|
Transcriptome reprogramming of key transcription factor deletion strains of Saccharomyces cerevisiae compared with the wild type strain by RNA-Seq | Saccharomyces cerevisiae cells have evolved remarkably sophisticated and flexible transcriptional regulatory networks (TRNs) that allow them to survive and thrive in stress conditions, such as high temperature, osmotic and oxidative conditions, etc. Furthermore, transcription factor plays a central role in transcriptional regulatory networks of stress response. To achieve a thorough understanding of master transcription factors and transcriptional regulatory networks in specific response to prolonged thermal stress, we sequenced mRNA from the cultures of the wild type strain ScY01a as well as four key transcription factor deletion strains including ScY01a (ric1∆), ScY01a (srb2∆), ScY01a (sin3∆) and ScY01a (mig1∆) grown at 40ºC in biological duplicates. Differences in gene expression comparing the transcription factor deletion strains with the wild type strain by RNA deep sequencing revealed a hierarchical transcriptional regulatory network required for long-term thermal stress tolerance of S. cerevisiae, which is centered on these four transcription factors. | transcriptional regulation | 5 |
Transcriptome reprogramming of key transcription factor deletion strains of Saccharomyces cerevisiae compared with the wild type strain grown at normal temperature by RNA-Seq | Saccharomyces cerevisiae cells have evolved remarkably sophisticated and flexible transcriptional regulatory networks (TRNs) that allow them to survive and thrive in stress conditions, such as high temperature, osmotic and oxidative conditions, etc. Furthermore, transcription factor plays a central role in transcriptional regulatory networks of stress response. To achieve a thorough understanding of master transcription factors and transcriptional regulatory networks in specific response to prolonged thermal stress, we previously sequenced mRNA from the cultures of the wild type strain ScY01a as well as three key transcription factor deletion strains including ScY01a (srb2∆), ScY01a (sin3∆) and ScY01a (mig1∆) grown at 40ºC in biological duplicates. Here, we further sequenced the corresponding samples cultured at 30ºC as a control. Differences in gene expression comparing the transcription factor deletion strains with the wild type strain by RNA deep sequencing revealed a hierarchical transcriptional regulatory network centered on these three transcription factors in S. cerevisiae. | transcriptional regulation | 8 |
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | File | Description |
---|