Reference: Casari E, et al. (2025) Checkpoint activation and recovery: regulation of the 9-1-1 axis by the PP2A phosphatase. DNA Repair (Amst) 151:103854

Reference Help

Abstract


Genome integrity is continuously monitored by elaborate cellular networks, collectively referred to as the DNA damage response (DDR), which detect DNA lesions and transmit the information to downstream targets, thereby coordinating a broad range of biological processes. A crucial signal in this response is the generation of single-stranded DNA that, once coated by replication protein A (RPA), serves as a platform for recruiting the apical checkpoint kinase Mec1/ATR. Full activation of Mec1/ATR also requires the 9-1-1 complex, which provides a docking site for additional checkpoint mediators, such as Dpb11/TOPBP1 and Rad9/53BP1. These mediators are important for transducing the checkpoint signal from Mec1/ATR to the effector kinase Rad53/CHK2. The checkpoint signal transduction cascade is tightly regulated by phosphorylation events, which can be counteracted by phosphatases to ensure timely checkpoint inactivation once DNA repair is complete. In this review, we examine the mechanistic aspects of Mec1/ATR activation, with a particular focus on the 9-1-1 checkpoint axis in Saccharomyces cerevisiae. We discuss how phosphorylation and dephosphorylation dynamically regulate the checkpoint pathway, allowing cells to efficiently respond to genotoxic stress while ensuring a timely return to normal cell-cycle progression.

Reference Type
Journal Article
Authors
Casari E, Tisi R, Longhese MP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference