Norris AC, et al. (2024) Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. Biochim Biophys Acta Mol Cell Res 1871(4):119700 PMID:38382846
Pazos I, et al. (2023) The P4-ATPase Drs2 interacts with and stabilizes the multisubunit tethering complex TRAPPIII in yeast. EMBO Rep 24(5):e56134 PMID:36929574
Jain BK, et al. (2022) Lipid Transport by Candida albicans Dnf2 Is Required for Hyphal Growth and Virulence. Infect Immun 90(11):e0041622 PMID:36214556
Steenwyk JL, et al. (2022) An orthologous gene coevolution network provides insight into eukaryotic cellular and genomic structure and function. Sci Adv 8(18):eabn0105 PMID:35507651
Best JT, et al. (2020) Yeast synaptobrevin, Snc1, engages distinct routes of postendocytic recycling mediated by a sorting nexin, Rcy1-COPI, and retromer. Mol Biol Cell 31(9):944-962 PMID:32074001
Huang Y, et al. (2020) Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 1865(2):158581 PMID:31786280
Roland BP, et al. (2019) Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs. J Biol Chem 294(6):1794-1806 PMID:30530492
Takar M, et al. (2019) The PQ-loop protein Any1 segregates Drs2 and Neo1 functions required for viability and plasma membrane phospholipid asymmetry. J Lipid Res 60(5):1032-1042 PMID:30824614
Roland BP and Graham TR (2016) Directed evolution of a sphingomyelin flippase reveals mechanism of substrate backbone discrimination by a P4-ATPase. Proc Natl Acad Sci U S A 113(31):E4460-6 PMID:27432949
Takar M, et al. (2016) The Essential Neo1 Protein from Budding Yeast Plays a Role in Establishing Aminophospholipid Asymmetry of the Plasma Membrane. J Biol Chem 291(30):15727-39 PMID:27235400
Wu Y, et al. (2016) Neo1 and phosphatidylethanolamine contribute to vacuole membrane fusion in Saccharomyces cerevisiae. Cell Logist 6(3):e1228791 PMID:27738552
Hankins HM, et al. (2015) Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles. Mol Biol Cell 26(25):4674-85 PMID:26466678
Baldridge RD and Graham TR (2013) Two-gate mechanism for phospholipid selection and transport by type IV P-type ATPases. Proc Natl Acad Sci U S A 110(5):E358-67 PMID:23302692
Baldridge RD, et al. (2013) Type IV P-type ATPases distinguish mono- versus diacyl phosphatidylserine using a cytofacial exit gate in the membrane domain. J Biol Chem 288(27):19516-27 PMID:23709217
Zhou X, et al. (2013) Auto-inhibition of Drs2p, a yeast phospholipid flippase, by its carboxyl-terminal tail. J Biol Chem 288(44):31807-15 PMID:24045945
Baldridge RD and Graham TR (2012) Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases. Proc Natl Acad Sci U S A 109(6):E290-8 PMID:22308393
Sebastian TT, et al. (2012) Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochim Biophys Acta 1821(8):1068-77 PMID:22234261
Muthusamy BP, et al. (2009) Control of protein and sterol trafficking by antagonistic activities of a type IV P-type ATPase and oxysterol binding protein homologue. Mol Biol Cell 20(12):2920-31 PMID:19403696
Zhou X and Graham TR (2009) Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast. Proc Natl Acad Sci U S A 106(39):16586-91 PMID:19805341
Liu K, et al. (2008) P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes. Mol Biol Cell 19(8):3526-35 PMID:18508916
Liu K, et al. (2007) Yeast P4-ATPases Drs2p and Dnf1p are essential cargos of the NPFXD/Sla1p endocytic pathway. Mol Biol Cell 18(2):487-500 PMID:17122361
Chen S, et al. (2006) Roles for the Drs2p-Cdc50p complex in protein transport and phosphatidylserine asymmetry of the yeast plasma membrane. Traffic 7(11):1503-17 PMID:16956384
Natarajan P and Graham TR (2006) Measuring translocation of fluorescent lipid derivatives across yeast Golgi membranes. Methods 39(2):163-8 PMID:16828307
Chantalat S, et al. (2004) The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. J Cell Sci 117(Pt 5):711-22 PMID:14734650
Natarajan P, et al. (2004) Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc Natl Acad Sci U S A 101(29):10614-9 PMID:15249668
Hua Z and Graham TR (2003) Requirement for neo1p in retrograde transport from the Golgi complex to the endoplasmic reticulum. Mol Biol Cell 14(12):4971-83 PMID:12960419
Hua Z, et al. (2002) An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. Mol Biol Cell 13(9):3162-77 PMID:12221123
Brigance WT, et al. (2000) Organization of the yeast Golgi complex into at least four functionally distinct compartments. Mol Biol Cell 11(1):171-82 PMID:10637300
Hopkins BD, et al. (2000) Introduction of Kex2 cleavage sites in fusion proteins for monitoring localization and transport in yeast secretory pathway. Methods Enzymol 327:107-18 PMID:11044978
Chen CY, et al. (1999) Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. J Cell Biol 147(6):1223-36 PMID:10601336
Chen CY and Graham TR (1998) An arf1Delta synthetic lethal screen identifies a new clathrin heavy chain conditional allele that perturbs vacuolar protein transport in Saccharomyces cerevisiae. Genetics 150(2):577-89 PMID:9755191
Gaynor EC, et al. (1998) COPI in ER/Golgi and intra-Golgi transport: do yeast COPI mutants point the way? Biochim Biophys Acta 1404(1-2):33-51 PMID:9714721
Graham TR and Krasnov VA (1995) Sorting of yeast alpha 1,3 mannosyltransferase is mediated by a lumenal domain interaction, and a transmembrane domain signal that can confer clathrin-dependent Golgi localization to a secreted protein. Mol Biol Cell 6(7):809-24 PMID:7579696
Graham TR, et al. (1994) Clathrin-dependent localization of alpha 1,3 mannosyltransferase to the Golgi complex of Saccharomyces cerevisiae. J Cell Biol 127(3):667-78 PMID:7962051
Graham TR, et al. (1993) Brefeldin A reversibly blocks early but not late protein transport steps in the yeast secretory pathway. EMBO J 12(3):869-77 PMID:8458343
Graham TR and Emr SD (1991) Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant. J Cell Biol 114(2):207-18 PMID:2071670
Vida TA, et al. (1990) In vitro reconstitution of intercompartmental protein transport to the yeast vacuole. J Cell Biol 111(6 Pt 2):2871-84 PMID:2269659