Chatterjee N, et al. (2013) Role of polymerase η in mitochondrial mutagenesis of Saccharomyces cerevisiae. Biochem Biophys Res Commun 431(2):270-3 PMID:23313845
Jain D and Siede W (2013) Rad5 template switch pathway of DNA damage tolerance determines synergism between cisplatin and NSC109268 in Saccharomyces cerevisiae. PLoS One 8(10):e77666 PMID:24130896
Rozario D and Siede W (2012) Saccharomyces cerevisiae Tel2 plays roles in TORC signaling and telomere maintenance that can be mutationally separated. Biochem Biophys Res Commun 417(4):1182-7 PMID:22227188
Kim E and Siede W (2011) Phenotypes associated with Saccharomyces cerevisiae Hug1 protein, a putative negative regulator of dNTP Levels, reveal similarities and differences with sequence-related Dif1. J Microbiol 49(1):78-85 PMID:21369983
Jain D, et al. (2010) Enhancement of cisplatin sensitivity by NSC109268 in budding yeast and human cancer cells is associated with inhibition of S-phase progression. Cancer Chemother Pharmacol 66(5):945-52 PMID:20101404
Gong J and Siede W (2009) SBF transcription factor complex positively regulates UV mutagenesis in Saccharomyces cerevisiae. Biochem Biophys Res Commun 379(4):1009-14 PMID:19150335
Kim E and Siede W (2009) The available SRL3 deletion strain of Saccharomyces cerevisiae contains a truncation of DNA damage tolerance protein Mms2: Implications for Srl3 and Mms2 functions. Internet J Microbiol 8(1):8 PMID:24795789
Pawar V, et al. (2009) Checkpoint kinase phosphorylation in response to endogenous oxidative DNA damage in repair-deficient stationary-phase Saccharomyces cerevisiae. Mech Ageing Dev 130(8):501-8 PMID:19540258
Pabla R, et al. (2008) Regulation of Saccharomyces cerevisiae DNA polymerase eta transcript and protein. Radiat Environ Biophys 47(1):157-68 PMID:17874115
Bracesco N, et al. (2007) Roles of Saccharomyces cerevisiae RAD17 and CHK1 checkpoint genes in the repair of double-strand breaks in cycling cells. Radiat Environ Biophys 46(4):401-7 PMID:17624540
Pabla R, et al. (2006) Characterization of checkpoint responses to DNA damage in Saccharomyces cerevisiae: basic protocols. Methods Enzymol 409:101-17 PMID:16793397
Kow YW, et al. (2005) Mutagenic effects of abasic and oxidized abasic lesions in Saccharomyces cerevisiae. Nucleic Acids Res 33(19):6196-202 PMID:16257982
Taylor SD, et al. (2005) The conserved Mec1/Rad53 nuclear checkpoint pathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae. Mol Biol Cell 16(6):3010-8 PMID:15829566
Evert BA, et al. (2004) Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells. J Biol Chem 279(21):22585-94 PMID:15020594
Giannattasio M, et al. (2004) DNA decay and limited Rad53 activation after liquid holding of UV-treated nucleotide excision repair deficient S. cerevisiae cells. DNA Repair (Amst) 3(12):1591-9 PMID:15474420
Zhang H and Siede W (2004) Analysis of the budding yeast Saccharomyces cerevisiae cell cycle by morphological criteria and flow cytometry. Methods Mol Biol 241:77-91 PMID:14970647
Zhang H and Siede W (2003) Validation of a novel assay for checkpoint responses: characterization of camptothecin derivatives in Saccharomyces cerevisiae. Mutat Res 527(1-2):37-48 PMID:12787912
Zhang H, et al. (2003) Checkpoint arrest signaling in response to UV damage is independent of nucleotide excision repair in Saccharomyces cerevisiae. J Biol Chem 278(11):9382-7 PMID:12522147
Zhang H and Siede W (2002) UV-induced T-->C transition at a TT photoproduct site is dependent on Saccharomyces cerevisiae polymerase eta in vivo. Nucleic Acids Res 30(5):1262-7 PMID:11861920
Zhang H, et al. (2001) Characterization of DNA damage-stimulated self-interaction of Saccharomyces cerevisiae checkpoint protein Rad17p. J Biol Chem 276(28):26715-23 PMID:11356855
Liu Y, et al. (2000) Characterization of a Saccharomyces cerevisiae homologue of Schizosaccharomyces pombe Chk1 involved in DNA-damage-induced M-phase arrest. Mol Gen Genet 262(6):1132-46 PMID:10660074
Roush AA, et al. (1998) Deletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolog confers UV radiation sensitivity and altered mutability. Mol Gen Genet 257(6):686-92 PMID:9604893
Nunes E and Siede W (1996) Hyperthermia and paraquat-induced G1 arrest in the yeast Saccharomyces cerevisiae is independent of the RAD9 gene. Radiat Environ Biophys 35(1):55-7 PMID:8907645
Siede W, et al. (1996) The Saccharomyces cerevisiae MEC1 gene, which encodes a homolog of the human ATM gene product, is required for G1 arrest following radiation treatment. J Bacteriol 178(19):5841-3 PMID:8824640
Siede W, et al. (1996) Cloning and characterization of RAD17, a gene controlling cell cycle responses to DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res 24(9):1669-75 PMID:8649984
Siede W, et al. (1996) The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142(1):91-102 PMID:8770587
Wolter R, et al. (1996) Regulation of SNM1, an inducible Saccharomyces cerevisiae gene required for repair of DNA cross-links. Mol Gen Genet 250(2):162-8 PMID:8628215
Yang Y, et al. (1996) A mutation in a Saccharomyces cerevisiae gene (RAD3) required for nucleotide excision repair and transcription increases the efficiency of mismatch correction. Genetics 144(2):459-66 PMID:8889512
Reagan MS, et al. (1995) Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J Bacteriol 177(2):364-71 PMID:7814325
Allen JB, et al. (1994) The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8(20):2401-15 PMID:7958905
Siede W, et al. (1994) Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents. Genetics 138(2):271-81 PMID:7828811
Siede W, et al. (1993) Evidence that the Rad1 and Rad10 proteins of Saccharomyces cerevisiae participate as a complex in nucleotide excision repair of UV radiation damage. J Bacteriol 175(19):6345-7 PMID:8407807
Siede W, et al. (1993) RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 90(17):7985-9 PMID:8367452
Siede W and Friedberg EC (1992) Regulation of the yeast RAD2 gene: DNA damage-dependent induction correlates with protein binding to regulatory sequences and their deletion influences survival. Mol Gen Genet 232(2):247-56 PMID:1557031
Siede W and Friedberg EC (1990) Influence of DNA repair deficiencies on the UV sensitivity of yeast cells in different cell cycle stages. Mutat Res 245(4):287-92 PMID:2266980
Song JM, et al. (1990) Effects of multiple yeast rad3 mutant alleles on UV sensitivity, mutability, and mitotic recombination. J Bacteriol 172(12):6620-30 PMID:2174856
Siede W (1988) The RAD6 gene of yeast: a link between DNA repair, chromosome structure and protein degradation? Radiat Environ Biophys 27(4):277-86 PMID:2852379
Eckardt-Schupp F, et al. (1987) The RAD24 (= Rs1) gene product of Saccharomyces cerevisiae participates in two different pathways of DNA repair. Genetics 115(1):83-90 PMID:3549445
Siede W and Eckardt F (1986) Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. III. Dose-response pattern of mutation induction in UV-irradiated rev2ts cells. Mol Gen Genet 202(1):68-74 PMID:3515129
Siede W and Eckardt F (1986) Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair. Curr Genet 10(12):871-8 PMID:3329036
Siede W and Eckardt-Schupp F (1986) A mismatch repair-based model can explain some features of u.v. mutagenesis in yeast. Mutagenesis 1(6):471-4 PMID:3331686
Siede W and Eckardt-Schupp F (1986) DNA repair genes of Saccharomyces cerevisiae: complementing rad4 and rev2 mutations by plasmids which cannot be propagated in Escherichia coli. Curr Genet 11(3):205-10 PMID:3329049
Siede W, et al. (1985) Influence of different inhibitors on the activity of the RAD54 dependent step of DNA repair in Saccharomyces cerevisiae. Radiat Environ Biophys 24(1):1-7 PMID:3883395
Siede W, et al. (1983) Analysis of mutagenic DNA repair in a thermoconditional repair mutant of Saccharomyces cerevisiae. II. Influence of cycloheximide on UV-irradiated exponentially growing rev2ts cells. Mol Gen Genet 190(3):413-6 PMID:6348480
Siede W, et al. (1983) Analysis of mutagenic DNA repair in a thermoconditional repair mutant of Saccharomyces cerevisiae. I. Influence of cycloheximide on UV-irradiated stationary phase rev2ts cells. Mol Gen Genet 190(3):406-12 PMID:6348479
Siede W and Brendel M (1982) Interactions among genes controlling sensitivity to radiation (RAD) and to alkylation by nitrogen mustard (SNM) in yeast. Curr Genet 5(1):33-8 PMID:24186085
Ruhland A, et al. (1981) Isolation of yeast mutants sensitive to the bifunctional alkylating agent nitrogen mustard. Mol Gen Genet 181(3):346-51 PMID:7017347
Siede W and Brendel M (1981) Isolation and characterization of yeast mutants with thermoconditional sensitivity to the bifunctional alkylating agent nitrogen mustard. Curr Genet 4(2):145-9 PMID:24185960