Primary Literature
TEXT HERE
- Casler JC, et al. (2022) Clathrin adaptors mediate two sequential pathways of intra-Golgi recycling. J Cell Biol 221(1) PMID: 34739034
- Anton-Plagaro C, et al. (2021) Exomer complex regulates protein traffic at the TGN through differential interactions with cargos and clathrin adaptor complexes. FASEB J 35(6):e21615 PMID: 33978245
- Schoppe J, et al. (2021) Flexible open conformation of the AP-3 complex explains its role in cargo recruitment at the Golgi. J Biol Chem 297(5):101334 PMID: 34688652
- Buelto D, et al. (2020) Plasma membrane to vacuole traffic induced by glucose starvation requires Gga2-dependent sorting at the trans-Golgi network. Biol Cell 112(11):349-367 PMID: 32761633
- Casler JC, et al. (2019) Maturation-driven transport and AP-1-dependent recycling of a secretory cargo in the Golgi. J Cell Biol 218(5):1582-1601 PMID: 30858194
- Zhou H, et al. (2019) Clathrin Adaptor Complex-interacting Protein Irc6 Functions through the Conserved C-Terminal Domain. Sci Rep 9(1):4436 PMID: 30872642
- Zysnarski CJ, et al. (2019) Adaptor protein complex-1 (AP-1) is recruited by the HEATR5 protein Laa1 and its co-factor Laa2 in yeast. J Biol Chem 294(4):1410-1419 PMID: 30523155
- Martínez-Márquez JY and Duncan MC (2018) Investigation of Ldb19/Art1 localization and function at the late Golgi. PLoS One 13(11):e0206944 PMID: 30403748
- Daboussi L, et al. (2017) Conserved role for Gga proteins in phosphatidylinositol 4-kinase localization to the <i>trans</i>-Golgi network. Proc Natl Acad Sci U S A 114(13):3433-3438 PMID: 28289207
- Hoya M, et al. (2017) Traffic Through the Trans-Golgi Network and the Endosomal System Requires Collaboration Between Exomer and Clathrin Adaptors in Fission Yeast. Genetics 205(2):673-690 PMID: 27974503
- Whitfield ST, et al. (2016) The alternate AP-1 adaptor subunit Apm2 interacts with the Mil1 regulatory protein and confers differential cargo sorting. Mol Biol Cell 27(3):588-98 PMID: 26658609
- Morvan J, et al. (2015) Btn3 regulates the endosomal sorting function of the yeast Ent3 epsin, an adaptor for SNARE proteins. J Cell Sci 128(4):706-16 PMID: 25512335
- Daboussi L, et al. (2012) Phosphoinositide-mediated clathrin adaptor progression at the trans-Golgi network. Nat Cell Biol 14(3):239-48 PMID: 22344030
- Gorynia S, et al. (2012) Yeast Irc6p is a novel type of conserved clathrin coat accessory factor related to small G proteins. Mol Biol Cell 23(22):4416-29 PMID: 22993212
- Sun Y and Drubin DG (2012) Pik1-ing clathrin adaptors. Nat Cell Biol 14(3):231-2 PMID: 22344031
- O'Donnell AF, et al. (2010) Alpha-arrestins Aly1 and Aly2 regulate intracellular trafficking in response to nutrient signaling. Mol Biol Cell 21(20):3552-66 PMID: 20739461
- Renard HF, et al. (2010) Efficient ER exit and vacuole targeting of yeast Sna2p require two tyrosine-based sorting motifs. Traffic 11(7):931-46 PMID: 20406419
- Barfield RM, et al. (2009) The exomer coat complex transports Fus1p to the plasma membrane via a novel plasma membrane sorting signal in yeast. Mol Biol Cell 20(23):4985-96 PMID: 19812245
- Abazeed ME and Fuller RS (2008) Yeast Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins are but adaptor protein-1 is not required for cell-free transport of membrane proteins from the trans-Golgi network to the prevacuolar compartment. Mol Biol Cell 19(11):4826-36 PMID: 18784256
- Liu K, et al. (2008) P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes. Mol Biol Cell 19(8):3526-35 PMID: 18508916
- Copic A, et al. (2007) Ent3p and Ent5p exhibit cargo-specific functions in trafficking proteins between the trans-Golgi network and the endosomes in yeast. Mol Biol Cell 18(5):1803-15 PMID: 17344475
- Duncan MC, et al. (2007) Composite synthetic lethal identification of membrane traffic inhibitors. Proc Natl Acad Sci U S A 104(15):6235-40 PMID: 17404221
- Costaguta G, et al. (2006) Distinct roles for TGN/endosome epsin-like adaptors Ent3p and Ent5p. Mol Biol Cell 17(9):3907-20 PMID: 16790491
- Fernández GE and Payne GS (2006) Laa1p, a conserved AP-1 accessory protein important for AP-1 localization in yeast. Mol Biol Cell 17(7):3304-17 PMID: 16687571
- Foote C and Nothwehr SF (2006) The clathrin adaptor complex 1 directly binds to a sorting signal in Ste13p to reduce the rate of its trafficking to the late endosome of yeast. J Cell Biol 173(4):615-26 PMID: 16702232
- Phelan JP, et al. (2006) Fab1p and AP-1 are required for trafficking of endogenously ubiquitylated cargoes to the vacuole lumen in S. cerevisiae. J Cell Sci 119(Pt 20):4225-34 PMID: 17003107
- Sakane H, et al. (2006) The functional relationship between the Cdc50p-Drs2p putative aminophospholipid translocase and the Arf GAP Gcs1p in vesicle formation in the retrieval pathway from yeast early endosomes to the TGN. Cell Struct Funct 31(2):87-108 PMID: 17062999
- Kita A, et al. (2004) Loss of Apm1, the micro1 subunit of the clathrin-associated adaptor-protein-1 complex, causes distinct phenotypes and synthetic lethality with calcineurin deletion in fission yeast. Mol Biol Cell 15(6):2920-31 PMID: 15047861
- Duncan MC, et al. (2003) Yeast epsin-related proteins required for Golgi-endosome traffic define a gamma-adaptin ear-binding motif. Nat Cell Biol 5(1):77-81 PMID: 12483220
- Ha SA, et al. (2003) The synaptojanin-like protein Inp53/Sjl3 functions with clathrin in a yeast TGN-to-endosome pathway distinct from the GGA protein-dependent pathway. Mol Biol Cell 14(4):1319-33 PMID: 12686590
- Nakayama K and Wakatsuki S (2003) The structure and function of GGAs, the traffic controllers at the TGN sorting crossroads. Cell Struct Funct 28(5):431-42 PMID: 14745135
- Austin C, et al. (2002) Site-specific cross-linking reveals a differential direct interaction of class 1, 2, and 3 ADP-ribosylation factors with adaptor protein complexes 1 and 3. Biochemistry 41(14):4669-77 PMID: 11926829
- Boehm M and Bonifacino JS (2002) Genetic analyses of adaptin function from yeast to mammals. Gene 286(2):175-86 PMID: 11943473
- Valdivia RH, et al. (2002) The yeast clathrin adaptor protein complex 1 is required for the efficient retention of a subset of late Golgi membrane proteins. Dev Cell 2(3):283-94 PMID: 11879634
- Boehm M and Bonifacino JS (2001) Adaptins: the final recount. Mol Biol Cell 12(10):2907-20 PMID: 11598180
- Costaguta G, et al. (2001) Yeast Gga coat proteins function with clathrin in Golgi to endosome transport. Mol Biol Cell 12(6):1885-96 PMID: 11408593
- Hirst J, et al. (2001) GGAs: roles of the different domains and comparison with AP-1 and clathrin. Mol Biol Cell 12(11):3573-88 PMID: 11694590
- Yeung BG and Payne GS (2001) Clathrin interactions with C-terminal regions of the yeast AP-1 beta and gamma subunits are important for AP-1 association with clathrin coats. Traffic 2(8):565-76 PMID: 11489214
- Yeung BG, et al. (1999) Adaptor complex-independent clathrin function in yeast. Mol Biol Cell 10(11):3643-59 PMID: 10564262
- ter Haar E, et al. (1998) Atomic structure of clathrin: a beta propeller terminal domain joins an alpha zigzag linker. Cell 95(4):563-73 PMID: 9827808
- Aguilar RC, et al. (1997) Functional domain mapping of the clathrin-associated adaptor medium chains mu1 and mu2. J Biol Chem 272(43):27160-6 PMID: 9341158
- Cowles CR, et al. (1997) The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 91(1):109-18 PMID: 9335339
- Liang JO and Kornfeld S (1997) Comparative activity of ADP-ribosylation factor family members in the early steps of coated vesicle formation on rat liver Golgi membranes. J Biol Chem 272(7):4141-8 PMID: 9020126
- Liang JO, et al. (1997) Different domains of mammalian ADP-ribosylation factor 1 mediate interaction with selected target proteins. J Biol Chem 272(52):33001-8 PMID: 9407081