Primary Literature
TEXT HERE
- Friedl J, et al. (2020) More than just a ticket canceller: the mitochondrial processing peptidase tailors complex precursor proteins at internal cleavage sites. Mol Biol Cell 31(24):2657-2668 PMID: 32997570
- Gomes F, et al. (2017) Proteolytic cleavage by the inner membrane peptidase (IMP) complex or Oct1 peptidase controls the localization of the yeast peroxiredoxin Prx1 to distinct mitochondrial compartments. J Biol Chem 292(41):17011-17024 PMID: 28821623
- Dasari S and Kölling R (2016) Role of mitochondrial processing peptidase and AAA proteases in processing of the yeast acetohydroxyacid synthase precursor. FEBS Open Bio 6(7):765-73 PMID: 27398316
- Carrie C, et al. (2015) Identification of cleavage sites and substrate proteins for two mitochondrial intermediate peptidases in Arabidopsis thaliana. J Exp Bot 66(9):2691-708 PMID: 25732537
- Huang S, et al. (2015) INTERMEDIATE CLEAVAGE PEPTIDASE55 Modifies Enzyme Amino Termini and Alters Protein Stability in Arabidopsis Mitochondria. Plant Physiol 168(2):415-27 PMID: 25862457
- Burak E, et al. (2013) Evolving dual targeting of a prokaryotic protein in yeast. Mol Biol Evol 30(7):1563-73 PMID: 23462316
- Ieva R, et al. (2013) Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat Commun 4:2853 PMID: 24287567
- Kučera T, et al. (2013) A computational study of the glycine-rich loop of mitochondrial processing peptidase. PLoS One 8(9):e74518 PMID: 24058582
- Venne AS, et al. (2013) Novel highly sensitive, specific, and straightforward strategy for comprehensive N-terminal proteomics reveals unknown substrates of the mitochondrial peptidase Icp55. J Proteome Res 12(9):3823-30 PMID: 23964590
- Horvath SE, et al. (2012) Processing and topology of the yeast mitochondrial phosphatidylserine decarboxylase 1. J Biol Chem 287(44):36744-55 PMID: 22984266
- Bonn F, et al. (2011) Presequence-dependent folding ensures MrpL32 processing by the m-AAA protease in mitochondria. EMBO J 30(13):2545-56 PMID: 21610694
- Vögtle FN, et al. (2011) Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol Biol Cell 22(13):2135-43 PMID: 21525245
- Dvoráková-Holá K, et al. (2010) Glycine-rich loop of mitochondrial processing peptidase alpha-subunit is responsible for substrate recognition by a mechanism analogous to mitochondrial receptor Tom20. J Mol Biol 396(5):1197-210 PMID: 20053354
- Naamati A, et al. (2009) Dual targeting of Nfs1 and discovery of its novel processing enzyme, Icp55. J Biol Chem 284(44):30200-8 PMID: 19720832
- Regev-Rudzki N, et al. (2009) Dual localization of fumarase is dependent on the integrity of the glyoxylate shunt. Mol Microbiol 72(2):297-306 PMID: 19415796
- Vögtle FN, et al. (2009) Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139(2):428-39 PMID: 19837041
- Mukhopadhyay A, et al. (2007) Precursor protein is readily degraded in mitochondrial matrix space if the leader is not processed by mitochondrial processing peptidase. J Biol Chem 282(51):37266-75 PMID: 17959599
- Karniely S, et al. (2006) The presequence of fumarase is exposed to the cytosol during import into mitochondria. J Mol Biol 358(2):396-405 PMID: 16530220
- Khalimonchuk O, et al. (2006) Sequential processing of a mitochondrial tandem protein: insights into protein import in Schizosaccharomyces pombe. Eukaryot Cell 5(7):997-1006 PMID: 16835444
- Ondrovicová G, et al. (2005) Cleavage site selection within a folded substrate by the ATP-dependent lon protease. J Biol Chem 280(26):25103-10 PMID: 15870080
- Oshima T, et al. (2005) Recognition and processing of a nuclear-encoded polyprotein precursor by mitochondrial processing peptidase. Biochem J 385(Pt 3):755-61 PMID: 15458388
- Gakh O, et al. (2002) Mitochondrial processing peptidases. Biochim Biophys Acta 1592(1):63-77 PMID: 12191769
- Gakh O, et al. (2001) Substrate binding changes conformation of the alpha-, but not the beta-subunit of mitochondrial processing peptidase. Arch Biochem Biophys 385(2):392-6 PMID: 11368022
- Sass E, et al. (2001) Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini. J Biol Chem 276(49):46111-7 PMID: 11585823
- Taylor AB, et al. (2001) Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure 9(7):615-25 PMID: 11470436
- Nagao Y, et al. (2000) Glycine-rich region of mitochondrial processing peptidase alpha-subunit is essential for binding and cleavage of the precursor proteins. J Biol Chem 275(44):34552-6 PMID: 10942759
- Adamec J, et al. (1999) Complementation between mitochondrial processing peptidase (MPP) subunits from different species. Arch Biochem Biophys 370(1):77-85 PMID: 10496979
- Branda SS, et al. (1999) Yeast and human frataxin are processed to mature form in two sequential steps by the mitochondrial processing peptidase. J Biol Chem 274(32):22763-9 PMID: 10428860
- Kojima K, et al. (1998) Cooperative formation of a substrate binding pocket by alpha- and beta-subunits of mitochondrial processing peptidase. J Biol Chem 273(49):32542-6 PMID: 9829989
- Shimokata K, et al. (1998) Role of alpha-subunit of mitochondrial processing peptidase in substrate recognition. J Biol Chem 273(39):25158-63 PMID: 9737975
- Gruhler A, et al. (1997) N-terminal hydrophobic sorting signals of preproteins confer mitochondrial hsp70 independence for import into mitochondria. J Biol Chem 272(28):17410-5 PMID: 9211883
- Herrmann JM, et al. (1997) Insertion into the mitochondrial inner membrane of a polytopic protein, the nuclear-encoded Oxa1p. EMBO J 16(9):2217-26 PMID: 9171337
- Wagner I, et al. (1997) Autocatalytic processing of the ATP-dependent PIM1 protease: crucial function of a pro-region for sorting to mitochondria. EMBO J 16(24):7317-25 PMID: 9405361
- Robinson KM and Lemire BD (1996) A requirement for matrix processing peptidase but not for mitochondrial chaperonin in the covalent attachment of FAD to the yeast succinate dehydrogenase flavoprotein. J Biol Chem 271(8):4061-7 PMID: 8626740
- Stoltz M, et al. (1996) Covalent attachment of FAD derivatives to a fusion protein consisting of 6-hydroxy-D-nicotine oxidase and a mitochondrial presequence. Folding, enzyme activity, and import of the modified protein into yeast mitochondria. J Biol Chem 271(41):25208-12 PMID: 8810280
- Supek F, et al. (1996) A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci U S A 93(10):5105-10 PMID: 8643535
- Branda SS and Isaya G (1995) Prediction and identification of new natural substrates of the yeast mitochondrial intermediate peptidase. J Biol Chem 270(45):27366-73 PMID: 7593000
- Smith AG, et al. (1994) Isolation of a cDNA encoding chloroplast ferrochelatase from Arabidopsis thaliana by functional complementation of a yeast mutant. J Biol Chem 269(18):13405-13 PMID: 8175771
- Isaya G, et al. (1992) Sequence analysis of rat mitochondrial intermediate peptidase: similarity to zinc metallopeptidases and to a putative yeast homologue. Proc Natl Acad Sci U S A 89(17):8317-21 PMID: 1518864
- Yang MJ, et al. (1991) The MAS-encoded processing protease of yeast mitochondria. Interaction of the purified enzyme with signal peptides and a purified precursor protein. J Biol Chem 266(10):6416-23 PMID: 2007593
- Schneider H, et al. (1990) Matrix processing peptidase of mitochondria. Structure-function relationships. J Biol Chem 265(17):9881-7 PMID: 2141023
- Pollock RA, et al. (1988) The processing peptidase of yeast mitochondria: the two co-operating components MPP and PEP are structurally related. EMBO J 7(11):3493-500 PMID: 3061797