Literature Help
SPE1 / YKL184W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
- Unique References
- 120
- Aliases
-
ORD1
,
SPE10
6
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Hofer SJ, et al. (2024) Spermidine is essential for fasting-mediated autophagy and longevity. Nat Cell Biol 26(9):1571-1584 PMID:39117797
- Vindu A, et al. (2021) Translational autoregulation of the S. cerevisiae high-affinity polyamine transporter Hol1. Mol Cell 81(19):3904-3918.e6 PMID:34375581
- Hanner AS, et al. (2019) Elevation of cellular Mg2+ levels by the Mg2+ transporter, Alr1, supports growth of polyamine-deficient Saccharomyces cerevisiae cells. J Biol Chem 294(45):17131-17142 PMID:31548311
- Olin-Sandoval V, et al. (2019) Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism. Nature 572(7768):249-253 PMID:31367038
- Romero N, et al. (2017) Mammalian agmatinases constitute unusual members in the family of Mn2+-dependent ureahydrolases. J Inorg Biochem 166:122-125 PMID:27846445
- Teoh ST, et al. (2016) Random sample consensus combined with partial least squares regression (RANSAC-PLS) for microbial metabolomics data mining and phenotype improvement. J Biosci Bioeng 122(2):168-75 PMID:26861498
- Li B, et al. (2015) Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates Tetrahymena thermophila and Paramecium tetaurelia. Mol Microbiol 97(5):791-807 PMID:25994085
- Richard VR, et al. (2014) Mechanism of liponecrosis, a distinct mode of programmed cell death. Cell Cycle 13(23):3707-26 PMID:25483081
- Novo M, et al. (2013) Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation. PLoS One 8(9):e74086 PMID:24040173
- Ryan O, et al. (2012) Global gene deletion analysis exploring yeast filamentous growth. Science 337(6100):1353-6 PMID:22984072
- Fogle EJ and Toney MD (2011) Analysis of catalytic determinants of diaminopimelate and ornithine decarboxylases using alternate substrates. Biochim Biophys Acta 1814(9):1113-9 PMID:21640851
- Gödderz D, et al. (2011) The N-terminal unstructured domain of yeast ODC functions as a transplantable and replaceable ubiquitin-independent degron. J Mol Biol 407(3):354-67 PMID:21295581
- Theis JF, et al. (2010) The DNA damage response pathway contributes to the stability of chromosome III derivatives lacking efficient replicators. PLoS Genet 6(12):e1001227 PMID:21151954
- Choi SY, et al. (2009) Insect ornithine decarboxylase (ODC) complements SPE1 knock-out of yeast Saccharomyces cerevisiae. Mol Cells 28(6):575-81 PMID:19937472
- Eisenberg T, et al. (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305-14 PMID:19801973
- Uemura T, et al. (2009) Polyamine modulon in yeast-Stimulation of COX4 synthesis by spermidine at the level of translation. Int J Biochem Cell Biol 41(12):2538-45 PMID:19695341
- Hiraga S, et al. (2008) Histone H3 lysine 56 acetylation by Rtt109 is crucial for chromosome positioning. J Cell Biol 183(4):641-51 PMID:19001125
- Porat Z, et al. (2008) Yeast antizyme mediates degradation of yeast ornithine decarboxylase by yeast but not by mammalian proteasome: new insights on yeast antizyme. J Biol Chem 283(8):4528-34 PMID:18089576
- Strome ED, et al. (2008) Heterozygous screen in Saccharomyces cerevisiae identifies dosage-sensitive genes that affect chromosome stability. Genetics 178(3):1193-207 PMID:18245329
- Aouida M, et al. (2005) AGP2 encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae. J Biol Chem 280(25):24267-76 PMID:15855155
- Gupta R, et al. (2001) Effect of spermidine on the in vivo degradation of ornithine decarboxylase in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 98(19):10620-3 PMID:11535806
- McNemar MD, et al. (2001) Isolation of a gene encoding a putative polyamine transporter from Candida albicans, GPT1. Yeast 18(6):555-61 PMID:11284011
- White WH, et al. (2001) Saccharomyces cerevisiae is capable of de Novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine. J Biol Chem 276(14):10794-800 PMID:11154694
- Toth C and Coffino P (1999) Regulated degradation of yeast ornithine decarboxylase. J Biol Chem 274(36):25921-6 PMID:10464336
- Klein RD, et al. (1997) Haemonchus contortus: cloning and functional expression of a cDNA encoding ornithine decarboxylase and development of a screen for inhibitors. Exp Parasitol 87(3):171-84 PMID:9371082
- Lussier M, et al. (1997) Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147(2):435-50 PMID:9335584
- McNemar MD, et al. (1997) Isolation and sequence of the gene encoding ornithine decarboxylase, SPE1, from Candida albicans by complementation of a spe1 delta strain of Saccharomyces cerevisiae. Yeast 13(14):1383-9 PMID:9392083
- Elias S, et al. (1995) Degradation of ornithine decarboxylase by the mammalian and yeast 26S proteasome complexes requires all the components of the protease. Eur J Biochem 229(1):276-83 PMID:7744041
- Schwartz B, et al. (1995) A new model for disruption of the ornithine decarboxylase gene, SPE1, in Saccharomyces cerevisiae exhibits growth arrest and genetic instability at the MAT locus. Biochem J 312 ( Pt 1)(Pt 1):83-90 PMID:7492339
- Balasundaram D, et al. (1994) The presence of an active S-adenosylmethionine decarboxylase gene increases the growth defect observed in Saccharomyces cerevisiae mutants unable to synthesize putrescine, spermidine, and spermine. J Bacteriol 176(20):6407-9 PMID:7929015
- Balasundaram D, et al. (1994) SPE1 and SPE2: two essential genes in the biosynthesis of polyamines that modulate +1 ribosomal frameshifting in Saccharomyces cerevisiae. J Bacteriol 176(22):7126-8 PMID:7961484
- Mamroud-Kidron E, et al. (1994) The 20S proteasome mediates the degradation of mouse and yeast ornithine decarboxylase in yeast cells. FEBS Lett 337(3):239-42 PMID:8293806
- Xie QW, et al. (1990) Ornithine decarboxylase in Saccharomyces cerevisiae: chromosomal assignment and genetic mapping of the SPE1 gene. Yeast 6(6):455-60 PMID:2080662
- Fonzi WA (1989) Biochemical and genetic characterization of the structure of yeast ornithine decarboxylase. Biochem Biophys Res Commun 162(3):1409-16 PMID:2669750
- Fonzi WA (1989) Regulation of Saccharomyces cerevisiae ornithine decarboxylase expression in response to polyamine. J Biol Chem 264(30):18110-8 PMID:2681188
- Fonzi WA and Sypherd PS (1987) The gene and the primary structure of ornithine decarboxylase from Saccharomyces cerevisiae. J Biol Chem 262(21):10127-33 PMID:3038869
- Pösö H and Pegg AE (1983) Measurement of the amount of ornithine decarboxylase in Saccharomyces cerevisiae and Saccharomyces uvarum by using alpha-[5-14C]difluoromethylornithine. Biochim Biophys Acta 747(3):209-14 PMID:6412757
- Tabor CW, et al. (1982) The biochemistry, genetics, and regulation of polyamine biosynthesis in Saccharomyces cerevisiae. Fed Proc 41(14):3084-8 PMID:6754461
- Tabor CW (1981) Mutants of Saccharomyces cerevisiae deficient in polyamine biosynthesis: studies on the regulation of ornithine decarboxylase. Med Biol 59(5-6):272-8 PMID:7040829
- Cohn MS, et al. (1980) Regulatory mutations affecting ornithine decarboxylase activity in Saccharomyces cerevisiae. J Bacteriol 142(3):791-9 PMID:6991493
- Kay DG, et al. (1980) Ornithine decarboxylase activity and cell cycle regulation in Saccharomyces cerevisiae. J Bacteriol 141(3):1041-6 PMID:6988399
- Brawley JV and Ferro AJ (1979) Polyamine biosynthesis during germination of yeast ascospores. J Bacteriol 140(2):649-54 PMID:387744
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Nguyet VTA, et al. (2023) Severe ethanol stress inhibits yeast proteasome activity at moderate temperatures but not at low temperatures. Genes Cells 28(10):736-745 PMID:37550872
- Kong CC, et al. (2022) Metabolic engineering of Aureobasidium melanogenum for the overproduction of putrescine by improved L-ornithine biosynthesis. Microbiol Res 260:127041 PMID:35483312
- Nguyet VTA, et al. (2022) Acquired resistance to severe ethanol stress-induced inhibition of proteasomal proteolysis in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 1866(12):130241 PMID:36075516
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Joshi RG, et al. (2015) Engineering degrons of yeast ornithine decarboxylase as vehicles for efficient targeted protein degradation. Biochim Biophys Acta 1850(12):2452-63 PMID:26363464
- Su H, et al. (2014) Identification and assessment of the effects of yeast decarboxylases expressed in Escherichia coli for producing higher alcohols. J Appl Microbiol 117(1):126-38 PMID:24690097
- Styger G, et al. (2013) Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97(10):4429-42 PMID:23111598
- Addinall SG, et al. (2011) Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects. PLoS Genet 7(4):e1001362 PMID:21490951
- Chattopadhyay MK, et al. (2011) Yeast ornithine decarboxylase and antizyme form a 1:1 complex in vitro: purification and characterization of the inhibitory complex. Biochem Biophys Res Commun 406(2):177-82 PMID:21295540
- Rato C, et al. (2011) Translational recoding as a feedback controller: systems approaches reveal polyamine-specific effects on the antizyme ribosomal frameshift. Nucleic Acids Res 39(11):4587-97 PMID:21303766
- Styger G, et al. (2011) Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols. Appl Microbiol Biotechnol 91(3):713-30 PMID:21547456
- Chattopadhyay MK, et al. (2008) Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proc Natl Acad Sci U S A 105(18):6554-9 PMID:18451031
- Park SH, et al. (2007) The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system. Mol Biol Cell 18(1):153-65 PMID:17065559
- Hoyt MA, et al. (2003) Ubiquitin-independent mechanisms of mouse ornithine decarboxylase degradation are conserved between mammalian and fungal cells. J Biol Chem 278(14):12135-43 PMID:12562772
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Subhi AL, et al. (2003) Methylthioadenosine phosphorylase regulates ornithine decarboxylase by production of downstream metabolites. J Biol Chem 278(50):49868-73 PMID:14506228
- White WH, et al. (2003) Specialization of function among aldehyde dehydrogenases: the ALD2 and ALD3 genes are required for beta-alanine biosynthesis in Saccharomyces cerevisiae. Genetics 163(1):69-77 PMID:12586697
- Gandre S and Kahana C (2002) Degradation of ornithine decarboxylase in Saccharomyces cerevisiae is ubiquitin independent. Biochem Biophys Res Commun 293(1):139-44 PMID:12054575
- Takatsuka Y, et al. (2000) Gene cloning and molecular characterization of lysine decarboxylase from Selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylases from eukaryotes. J Bacteriol 182(23):6732-41 PMID:11073919
- Miret JJ, et al. (1992) Polyamines and cell wall organization in Saccharomyces cerevisiae. Yeast 8(12):1033-41 PMID:1293883
- Hamill JD, et al. (1990) Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol Biol 15(1):27-38 PMID:2103440
- Fitzgerald MC and Flanagan MA (1989) Characterization and sequence analysis of the human ornithine decarboxylase gene. DNA 8(9):623-34 PMID:2693021
- Whitney PA and Morris DR (1978) Polyamine auxotrophs of Saccharomyces cerevisiae. J Bacteriol 134(1):214-20 PMID:348679
Reviews
No reviews curated.
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- White WH, et al. (2001) Saccharomyces cerevisiae is capable of de Novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine. J Biol Chem 276(14):10794-800 PMID:11154694
- Balasundaram D, et al. (1994) The presence of an active S-adenosylmethionine decarboxylase gene increases the growth defect observed in Saccharomyces cerevisiae mutants unable to synthesize putrescine, spermidine, and spermine. J Bacteriol 176(20):6407-9 PMID:7929015
- Fonzi WA (1989) Regulation of Saccharomyces cerevisiae ornithine decarboxylase expression in response to polyamine. J Biol Chem 264(30):18110-8 PMID:2681188
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Hofer SJ, et al. (2024) Spermidine is essential for fasting-mediated autophagy and longevity. Nat Cell Biol 26(9):1571-1584 PMID:39117797
- Kaur J, et al. (2021) Atg32-dependent mitophagy sustains spermidine and nitric oxide required for heat-stress tolerance in Saccharomycescerevisiae. J Cell Sci 134(11) PMID:34096604
- Ryan O, et al. (2012) Global gene deletion analysis exploring yeast filamentous growth. Science 337(6100):1353-6 PMID:22984072
- Eisenberg T, et al. (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305-14 PMID:19801973
- Uemura T, et al. (2009) Polyamine modulon in yeast-Stimulation of COX4 synthesis by spermidine at the level of translation. Int J Biochem Cell Biol 41(12):2538-45 PMID:19695341
- Hiraga S, et al. (2008) Histone H3 lysine 56 acetylation by Rtt109 is crucial for chromosome positioning. J Cell Biol 183(4):641-51 PMID:19001125
- Strome ED, et al. (2008) Heterozygous screen in Saccharomyces cerevisiae identifies dosage-sensitive genes that affect chromosome stability. Genetics 178(3):1193-207 PMID:18245329
- White WH, et al. (2001) Saccharomyces cerevisiae is capable of de Novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine. J Biol Chem 276(14):10794-800 PMID:11154694
- Lussier M, et al. (1997) Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147(2):435-50 PMID:9335584
- Schwartz B, et al. (1995) A new model for disruption of the ornithine decarboxylase gene, SPE1, in Saccharomyces cerevisiae exhibits growth arrest and genetic instability at the MAT locus. Biochem J 312 ( Pt 1)(Pt 1):83-90 PMID:7492339
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Ali A, et al. (2023) Adaptive preservation of orphan ribosomal proteins in chaperone-dispersed condensates. Nat Cell Biol 25(11):1691-1703 PMID:37845327
- Nsamba ET, et al. (2021) Tubulin isotypes optimize distinct spindle positioning mechanisms during yeast mitosis. J Cell Biol 220(12) PMID:34739032
- Vindu A, et al. (2021) Translational autoregulation of the S. cerevisiae high-affinity polyamine transporter Hol1. Mol Cell 81(19):3904-3918.e6 PMID:34375581
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Espinosa-Cantú A, et al. (2018) Protein Moonlighting Revealed by Noncatalytic Phenotypes of Yeast Enzymes. Genetics 208(1):419-431 PMID:29127264
- Mount HO, et al. (2018) Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genet 14(4):e1007319 PMID:29702647
- Geva Y, et al. (2017) Two novel effectors of trafficking and maturation of the yeast plasma membrane H+ -ATPase. Traffic 18(10):672-682 PMID:28727280
- Yofe I, et al. (2017) Pex35 is a regulator of peroxisome abundance. J Cell Sci 130(4):791-804 PMID:28049721
- Babour A, et al. (2016) The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 167(5):1201-1214.e15 PMID:27863241
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Kyriakou D, et al. (2016) Functional characterisation of long intergenic non-coding RNAs through genetic interaction profiling in Saccharomyces cerevisiae. BMC Biol 14(1):106 PMID:27927215
- Srivas R, et al. (2016) A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy. Mol Cell 63(3):514-25 PMID:27453043
- Dubarry M, et al. (2015) Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae. G3 (Bethesda) 5(10):2187-97 PMID:26297725
- Ho KL, et al. (2015) A role for the budding yeast separase, Esp1, in Ty1 element retrotransposition. PLoS Genet 11(3):e1005109 PMID:25822502
- Porter DF, et al. (2015) Target selection by natural and redesigned PUF proteins. Proc Natl Acad Sci U S A 112(52):15868-73 PMID:26668354
- Sanchez-Casalongue ME, et al. (2015) Differential phosphorylation of a regulatory subunit of protein kinase CK2 by target of rapamycin complex 1 signaling and the Cdc-like kinase Kns1. J Biol Chem 290(11):7221-33 PMID:25631054
- Voynova NS, et al. (2015) Saccharomyces cerevisiae Is Dependent on Vesicular Traffic between the Golgi Apparatus and the Vacuole When Inositolphosphorylceramide Synthase Aur1 Is Inactivated. Eukaryot Cell 14(12):1203-16 PMID:26432633
- Nguyen HD, et al. (2013) Unligated Okazaki Fragments Induce PCNA Ubiquitination and a Requirement for Rad59-Dependent Replication Fork Progression. PLoS One 8(6):e66379 PMID:23824283
- Styger G, et al. (2013) Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97(10):4429-42 PMID:23111598
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Moehle EA, et al. (2012) The yeast SR-like protein Npl3 links chromatin modification to mRNA processing. PLoS Genet 8(11):e1003101 PMID:23209445
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Addinall SG, et al. (2011) Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects. PLoS Genet 7(4):e1001362 PMID:21490951
- Bircham PW, et al. (2011) Secretory pathway genes assessed by high-throughput microscopy and synthetic genetic array analysis. Mol Biosyst 7(9):2589-98 PMID:21731954
- Chang HY, et al. (2011) Genome-wide analysis to identify pathways affecting telomere-initiated senescence in budding yeast. G3 (Bethesda) 1(3):197-208 PMID:22384331
- Chattopadhyay MK, et al. (2011) Yeast ornithine decarboxylase and antizyme form a 1:1 complex in vitro: purification and characterization of the inhibitory complex. Biochem Biophys Res Commun 406(2):177-82 PMID:21295540
- Finnigan GC, et al. (2011) A genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomyces cerevisiae. Genetics 187(3):771-83 PMID:21196517
- Gödderz D, et al. (2011) The N-terminal unstructured domain of yeast ODC functions as a transplantable and replaceable ubiquitin-independent degron. J Mol Biol 407(3):354-67 PMID:21295581
- Scherrer T, et al. (2011) Defining potentially conserved RNA regulons of homologous zinc-finger RNA-binding proteins. Genome Biol 12(1):R3 PMID:21232131
- Szappanos B, et al. (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 43(7):656-62 PMID:21623372
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Demmel L, et al. (2008) The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. Mol Biol Cell 19(5):1991-2002 PMID:18287542
- Porat Z, et al. (2008) Yeast antizyme mediates degradation of yeast ornithine decarboxylase by yeast but not by mammalian proteasome: new insights on yeast antizyme. J Biol Chem 283(8):4528-34 PMID:18089576
- Strome ED, et al. (2008) Heterozygous screen in Saccharomyces cerevisiae identifies dosage-sensitive genes that affect chromosome stability. Genetics 178(3):1193-207 PMID:18245329
- Zhao R, et al. (2008) Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol 180(3):563-78 PMID:18268103
- Harrison R, et al. (2007) Plasticity of genetic interactions in metabolic networks of yeast. Proc Natl Acad Sci U S A 104(7):2307-12 PMID:17284612
- Johansson MJ, et al. (2007) Association of yeast Upf1p with direct substrates of the NMD pathway. Proc Natl Acad Sci U S A 104(52):20872-7 PMID:18087042
- Ptacek J, et al. (2005) Global analysis of protein phosphorylation in yeast. Nature 438(7068):679-84 PMID:16319894
- Pollard KJ, et al. (1999) Functional interaction between GCN5 and polyamines: a new role for core histone acetylation. EMBO J 18(20):5622-33 PMID:10523306
- Balasundaram D, et al. (1994) The presence of an active S-adenosylmethionine decarboxylase gene increases the growth defect observed in Saccharomyces cerevisiae mutants unable to synthesize putrescine, spermidine, and spermine. J Bacteriol 176(20):6407-9 PMID:7929015
- Balasundaram D, et al. (1994) SPE1 and SPE2: two essential genes in the biosynthesis of polyamines that modulate +1 ribosomal frameshifting in Saccharomyces cerevisiae. J Bacteriol 176(22):7126-8 PMID:7961484
- Cohn MS, et al. (1980) Regulatory mutations affecting ornithine decarboxylase activity in Saccharomyces cerevisiae. J Bacteriol 142(3):791-9 PMID:6991493
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Novo M, et al. (2013) Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation. PLoS One 8(9):e74086 PMID:24040173
- Armakola M, et al. (2012) Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet 44(12):1302-9 PMID:23104007
- Huang Z, et al. (2012) Discovering thiamine transporters as targets of chloroquine using a novel functional genomics strategy. PLoS Genet 8(11):e1003083 PMID:23209439
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Jayakody LN, et al. (2011) Identification of glycolaldehyde as the key inhibitor of bioethanol fermentation by yeast and genome-wide analysis of its toxicity. Biotechnol Lett 33(2):285-92 PMID:20960220
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Villa-García MJ, et al. (2011) Genome-wide screen for inositol auxotrophy in Saccharomyces cerevisiae implicates lipid metabolism in stress response signaling. Mol Genet Genomics 285(2):125-49 PMID:21136082
- Yoshikawa K, et al. (2011) Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28(5):349-61 PMID:21341307
- Theis JF, et al. (2010) The DNA damage response pathway contributes to the stability of chromosome III derivatives lacking efficient replicators. PLoS Genet 6(12):e1001227 PMID:21151954
- Holbein S, et al. (2009) Cordycepin interferes with 3' end formation in yeast independently of its potential to terminate RNA chain elongation. RNA 15(5):837-49 PMID:19324962
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Mendiratta G, et al. (2006) The DNA-binding domain of the yeast Spt10p activator includes a zinc finger that is homologous to foamy virus integrase. J Biol Chem 281(11):7040-8 PMID:16415340
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
- Lussier M, et al. (1997) Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147(2):435-50 PMID:9335584