Reference: Goossens A, et al. (2001) The protein kinase Gcn2p mediates sodium toxicity in yeast. J Biol Chem 276(33):30753-60

Reference Help

Abstract


Phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha) is a conserved mechanism regulating protein synthesis in response to various stresses. A screening for negative factors in yeast salt stress tolerance has led to the identification of Gcn2p, the single yeast eIF2alpha kinase that is activated by amino acid starvation in the general amino acid control response. Mutation of other components of this regulatory circuit such as GCN1 and GCN3 also resulted in improved NaCl tolerance. The gcn2 phenotype was not accompanied by changes in sodium or potassium homeostasis. NaCl induced a Gcn2p-dependent phosphorylation of eIF2alpha and translational activation of Gcn4p, the transcription factor that mediates the general amino acid control response. Mutations that activate Gcn4p function, such as gcd7-201, cpc2, and deletion of the translational regulatory region of the GCN4 gene, also cause salt sensitivity. It can be postulated that sodium activation of the Gcn2p pathway has toxic effects on growth under NaCl stress and that this novel mechanism of sodium toxicity may be of general significance in eukaryotes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Goossens A, Dever TE, Pascual-Ahuir A, Serrano R
Primary Lit For
Additional Lit For
Review For

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions 0 entries for 0 genes

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

InteractorInteractorAssayAnnotationActionModification
No physical interaction data for Goossens A, et al. (2001)
Showing 0 to 0 of 0 entries