González L, et al. (2023) Adaptive partitioning of a gene locus to the nuclear envelope in Saccharomyces cerevisiae is driven by polymer-polymer phase separation. Nat Commun 14(1):1135 PMID:36854718
González L, et al. (2023) Publisher Correction: Adaptive partitioning of a gene locus to the nuclear envelope in Saccharomyces cerevisiae is driven by polymer-polymer phase separation. Nat Commun 14(1):2315 PMID:37085520
Lawrimore J, et al. (2022) Polymer models reveal how chromatin modification can modulate force at the kinetochore. Mol Biol Cell 33(11):ar97 PMID:35704466
Lawrimore J, et al. (2021) The rDNA is biomolecular condensate formed by polymer-polymer phase separation and is sequestered in the nucleolus by transcription and R-loops. Nucleic Acids Res 49(8):4586-4598 PMID:33836082
He Y, et al. (2020) Statistical mechanics of chromosomes: in vivo and in silico approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties. Nucleic Acids Res 48(20):11284-11303 PMID:33080019
Haase KP, et al. (2018) Stu2 uses a 15-nm parallel coiled coil for kinetochore localization and concomitant regulation of the mitotic spindle. Mol Biol Cell 29(3):285-294 PMID:29187574
Lawrimore J, et al. (2018) Geometric partitioning of cohesin and condensin is a consequence of chromatin loops. Mol Biol Cell 29(22):2737-2750 PMID:30207827
Suzuki A, et al. (2018) A Kinesin-5, Cin8, Recruits Protein Phosphatase 1 to Kinetochores and Regulates Chromosome Segregation. Curr Biol 28(17):2697-2704.e3 PMID:30174190
Hult C, et al. (2017) Enrichment of dynamic chromosomal crosslinks drive phase separation of the nucleolus. Nucleic Acids Res 45(19):11159-11173 PMID:28977453
Lawrimore J, et al. (2017) Microtubule dynamics drive enhanced chromatin motion and mobilize telomeres in response to DNA damage. Mol Biol Cell 28(12):1701-1711 PMID:28450453
Mishra PK, et al. (2016) Polo kinase Cdc5 associates with centromeres to facilitate the removal of centromeric cohesin during mitosis. Mol Biol Cell 27(14):2286-300 PMID:27226485
Suzuki A, et al. (2016) How the kinetochore couples microtubule force and centromere stretch to move chromosomes. Nat Cell Biol 18(4):382-92 PMID:26974660
Tsabar M, et al. (2016) A Cohesin-Based Partitioning Mechanism Revealed upon Transcriptional Inactivation of Centromere. PLoS Genet 12(4):e1006021 PMID:27128635
Calderon CP and Bloom K (2015) Inferring Latent States and Refining Force Estimates via Hierarchical Dirichlet Process Modeling in Single Particle Tracking Experiments. PLoS One 10(9):e0137633 PMID:26384324
Stephens AD, et al. (2015) The SUMO deconjugating peptidase Smt4 contributes to the mechanism required for transition from sister chromatid arm cohesion to sister chromatid pericentromere separation. Cell Cycle 14(14):2206-18 PMID:25946564
Snider CE, et al. (2014) Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis. J Cell Biol 207(2):189-99 PMID:25332162
Haase J, et al. (2013) A 3D map of the yeast kinetochore reveals the presence of core and accessory centromere-specific histone. Curr Biol 23(19):1939-44 PMID:24076245
Haber JE, et al. (2013) Systematic triple-mutant analysis uncovers functional connectivity between pathways involved in chromosome regulation. Cell Rep 3(6):2168-78 PMID:23746449
Song W, et al. (2013) Nonrandom distribution of interhomolog recombination events induced by breakage of a dicentric chromosome in Saccharomyces cerevisiae. Genetics 194(1):69-80 PMID:23410835
Stephens AD, et al. (2013) Pericentric chromatin loops function as a nonlinear spring in mitotic force balance. J Cell Biol 200(6):757-72 PMID:23509068
Stephens AD, et al. (2013) The spatial segregation of pericentric cohesin and condensin in the mitotic spindle. Mol Biol Cell 24(24):3909-19 PMID:24152737
Li Z, et al. (2011) Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat Biotechnol 29(4):361-7 PMID:21441928
Larson ME, et al. (2010) Uncovering chromatin's contribution to the mitotic spindle: Applications of computational and polymer models. Biochimie 92(12):1741-8 PMID:20600566
Anderson M, et al. (2009) Function and assembly of DNA looping, clustering, and microtubule attachment complexes within a eukaryotic kinetochore. Mol Biol Cell 20(19):4131-9 PMID:19656849
Joglekar AP, et al. (2009) In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr Biol 19(8):694-9 PMID:19345105
Gardner MK, et al. (2008) The microtubule-based motor Kar3 and plus end-binding protein Bim1 provide structural support for the anaphase spindle. J Cell Biol 180(1):91-100 PMID:18180364
Dotiwala F, et al. (2007) The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage. Proc Natl Acad Sci U S A 104(27):11358-63 PMID:17586685
Molk JN, et al. (2006) Nuclear congression is driven by cytoplasmic microtubule plus end interactions in S. cerevisiae. J Cell Biol 172(1):27-39 PMID:16380440
Shimogawa MM, et al. (2006) Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase. Curr Biol 16(15):1489-501 PMID:16890524
Bouck D and Bloom K (2005) The role of centromere-binding factor 3 (CBF3) in spindle stability, cytokinesis, and kinetochore attachment. Biochem Cell Biol 83(6):696-702 PMID:16333320
Gardner MK, et al. (2005) Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. Mol Biol Cell 16(8):3764-75 PMID:15930123
Roumanie O, et al. (2005) Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. J Cell Biol 170(4):583-94 PMID:16103227
Lobachev K, et al. (2004) Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr Biol 14(23):2107-12 PMID:15589152
Molk JN, et al. (2004) The differential roles of budding yeast Tem1p, Cdc15p, and Bub2p protein dynamics in mitotic exit. Mol Biol Cell 15(4):1519-32 PMID:14718561
Maddox PS, et al. (2003) The minus end-directed motor Kar3 is required for coupling dynamic microtubule plus ends to the cortical shmoo tip in budding yeast. Curr Biol 13(16):1423-8 PMID:12932327
Thrower DA, et al. (2003) Nuclear oscillations and nuclear filament formation accompany single-strand annealing repair of a dicentric chromosome in Saccharomyces cerevisiae. J Cell Sci 116(Pt 3):561-9 PMID:12508116
Kosco KA, et al. (2001) Control of microtubule dynamics by Stu2p is essential for spindle orientation and metaphase chromosome alignment in yeast. Mol Biol Cell 12(9):2870-80 PMID:11553724
Thrower DA and Bloom K (2001) Dicentric chromosome stretching during anaphase reveals roles of Sir2/Ku in chromatin compaction in budding yeast. Mol Biol Cell 12(9):2800-12 PMID:11553718
Beach DL, et al. (2000) The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr Biol 10(23):1497-506 PMID:11114516
Segal M, et al. (2000) Bud6 directs sequential microtubule interactions with the bud tip and bud neck during spindle morphogenesis in Saccharomyces cerevisiae. Mol Biol Cell 11(11):3689-702 PMID:11071900
Yeh E, et al. (2000) Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants. Mol Biol Cell 11(11):3949-61 PMID:11071919
Maddox P, et al. (1999) Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae. J Cell Biol 144(5):977-87 PMID:10085295
Theesfeld CL, et al. (1999) The role of actin in spindle orientation changes during the Saccharomyces cerevisiae cell cycle. J Cell Biol 146(5):1019-32 PMID:10477756
Shaw SL, et al. (1997) Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J Cell Biol 139(4):985-94 PMID:9362516
Yeh E, et al. (1995) Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 130(3):687-700 PMID:7622568
Kramer KM, et al. (1994) Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol Cell Biol 14(2):1293-301 PMID:8289808
Resnick MA, et al. (1990) Heterogeneity and maintenance of centromere plasmid copy number in Saccharomyces cerevisiae. Chromosoma 99(4):281-8 PMID:2209227
Yeh E, et al. (1986) Tightly centromere-linked gene (SPO15) essential for meiosis in the yeast Saccharomyces cerevisiae. Mol Cell Biol 6(1):158-67 PMID:3537684
Yeh E and Bloom K (1985) Characterization of a tightly centromere-linked gene essential for meiosis in the yeast Saccharomyces cerevisiae. Basic Life Sci 36:231-42 PMID:3913414