García-Marcelo MJ, et al. (2025) Measurement of rRNA Synthesis and Degradation Rates by 3H-Uracil Labeling in Yeast. Methods Mol Biol 2863:183-204 PMID:39535711
Cuevas-Bermúdez A, et al. (2024) The association of the RSC remodeler complex with chromatin is influenced by the prefoldin-like Bud27 and determines nucleosome positioning and polyadenylation sites usage in Saccharomyces cerevisiae. Biochim Biophys Acta Gene Regul Mech 1867(1):194995 PMID:37967810
Kelbert M, et al. (2024) The zinc-finger transcription factor Sfp1 imprints specific classes of mRNAs and links their synthesis to cytoplasmic decay. Elife 12 PMID:39356734
Pérez-Ortín JE, et al. (2024) Influence of cell volume on the gene transcription rate. Biochim Biophys Acta Gene Regul Mech 1867(1):195008 PMID:38246270
Begley V, et al. (2021) Transcriptional Run-on: Measuring Nascent Transcription at Specific Genomic Sites in Yeast. Bio Protoc 11(12):e4064 PMID:34263006
Begley V, et al. (2021) Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configuration. RNA Biol 18(9):1310-1323 PMID:33138675
García-Martínez J, et al. (2021) The total mRNA concentration buffering system in yeast is global rather than gene-specific. RNA 27(10):1281-1290 PMID:34272303
Pérez-Ortín JE, et al. (2021) Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast. PLoS Genet 17(4):e1009520 PMID:33826644
Begley V, et al. (2019) The mRNA degradation factor Xrn1 regulates transcription elongation in parallel to Ccr4. Nucleic Acids Res 47(18):9524-9541 PMID:31392315
Pérez-Ortín JE, et al. (2019) Homeostasis in the Central Dogma of molecular biology: the importance of mRNA instability. RNA Biol 16(12):1659-1666 PMID:31418631
Martínez-Fernández V, et al. (2018) Rpb5 modulates the RNA polymerase II transition from initiation to elongation by influencing Spt5 association and backtracking. Biochim Biophys Acta Gene Regul Mech 1861(1):1-13 PMID:29133017
Gutiérrez G, et al. (2017) Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning. Epigenetics Chromatin 10(1):58 PMID:29212533
Gómez-Herreros F, et al. (2017) The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation. Nucleic Acids Res 45(16):9302-9318 PMID:28637236
Mena A, et al. (2017) Asymmetric cell division requires specific mechanisms for adjusting global transcription. Nucleic Acids Res 45(21):12401-12412 PMID:29069448
Miguel A, et al. (2017) Corrigendum to "External conditions inversely change the RNA polymerase II elongation rate and density in yeast" [Biochim. Biophys. Acta 1829/11 (2013) 1248-1255]. Biochim Biophys Acta Gene Regul Mech 1860(2):289 PMID:27875711
García-Martínez J, et al. (2016) The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons. Nucleic Acids Res 44(8):3643-58 PMID:26717982
Jordán-Pla A, et al. (2015) Chromatin-dependent regulation of RNA polymerases II and III activity throughout the transcription cycle. Nucleic Acids Res 43(2):787-802 PMID:25550430
Nadal-Ribelles M, et al. (2015) H3K4 monomethylation dictates nucleosome dynamics and chromatin remodeling at stress-responsive genes. Nucleic Acids Res 43(10):4937-49 PMID:25813039
Mirón-García MC, et al. (2014) The yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription. Nucleic Acids Res 42(15):9666-76 PMID:25081216
Gaytán BD, et al. (2013) A genome-wide screen identifies yeast genes required for tolerance to technical toxaphene, an organochlorinated pesticide mixture. PLoS One 8(11):e81253 PMID:24260565
Gómez-Herreros F, et al. (2013) Balanced production of ribosome components is required for proper G1/S transition in Saccharomyces cerevisiae. J Biol Chem 288(44):31689-700 PMID:24043628
Miguel A, et al. (2013) External conditions inversely change the RNA polymerase II elongation rate and density in yeast. Biochim Biophys Acta 1829(11):1248-55 PMID:24103494
Pérez-Ortín JE, et al. (2013) What do you mean by transcription rate?: the conceptual difference between nascent transcription rate and mRNA synthesis rate is essential for the proper understanding of transcriptomic analyses. Bioessays 35(12):1056-62 PMID:24105897
García-Martínez J, et al. (2012) The relative importance of transcription rate, cryptic transcription and mRNA stability on shaping stress responses in yeast. Transcription 3(1):39-44 PMID:22456320
Gómez-Herreros F, et al. (2012) TFIIS is required for the balanced expression of the genes encoding ribosomal components under transcriptional stress. Nucleic Acids Res 40(14):6508-19 PMID:22544605
Morillo-Huesca M, et al. (2010) FACT prevents the accumulation of free histones evicted from transcribed chromatin and a subsequent cell cycle delay in G1. PLoS Genet 6(5):e1000964 PMID:20502685
Rodríguez-Gil A, et al. (2010) The distribution of active RNA polymerase II along the transcribed region is gene-specific and controlled by elongation factors. Nucleic Acids Res 38(14):4651-64 PMID:20385590
Gaillard H, et al. (2009) Genome-wide analysis of factors affecting transcription elongation and DNA repair: a new role for PAF and Ccr4-not in transcription-coupled repair. PLoS Genet 5(2):e1000364 PMID:19197357
Vanti M, et al. (2009) Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription. PLoS Genet 5(1):e1000339 PMID:19148280
García-Rubio M, et al. (2008) Different physiological relevance of yeast THO/TREX subunits in gene expression and genome integrity. Mol Genet Genomics 279(2):123-32 PMID:17960421
Dehé PM, et al. (2006) Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol Chem 281(46):35404-12 PMID:16921172
Jimeno-González S, et al. (2006) A gene-specific requirement for FACT during transcription is related to the chromatin organization of the transcribed region. Mol Cell Biol 26(23):8710-21 PMID:17000768
Morillo-Huesca M, et al. (2006) A simple in vivo assay for measuring the efficiency of gene length-dependent processes in yeast mRNA biogenesis. FEBS J 273(4):756-69 PMID:16441662
Chávez S, et al. (2001) Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae. Mol Cell Biol 21(20):7054-64 PMID:11564888
Chávez S, et al. (2000) A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J 19(21):5824-34 PMID:11060033
Chávez S and Aguilera A (1997) The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev 11(24):3459-70 PMID:9407037
Chávez S and Beato M (1997) Nucleosome-mediated synergism between transcription factors on the mouse mammary tumor virus promoter. Proc Natl Acad Sci U S A 94(7):2885-90 PMID:9096316
Piruat JI, et al. (1997) The yeast HRS1 gene is involved in positive and negative regulation of transcription and shows genetic characteristics similar to SIN4 and GAL11. Genetics 147(4):1585-94 PMID:9409823