Demir AB, et al. (2023) Toll-interacting protein may affect doxorubicin resistance in hepatocellular carcinoma cell lines. Mol Biol Rep 50(10):8551-8563 PMID:37644370
Uluisik I, et al. (2020) [tRNA Wobble Base Modifications and Boric Acid Resistance in Yeast: Boron-Resistant Deletion Mutants Induce the General Amino Acid Control Mechanism and Activate Boron Efflux]. Mol Biol (Mosk) 54(3):450-456 PMID:32492007
Balkan C, et al. (2019) Genomewide Elucidation of Drug Resistance Mechanisms for Systemically Used Antifungal Drugs Amphotericin B, Caspofungin, and Voriconazole in the Budding Yeast. Antimicrob Agents Chemother 63(9) PMID:31209012
Muid KA, et al. (2019) Characterization of long living yeast deletion mutants that lack mitochondrial metabolism genes DSS1, PPA2 and AFG3. Gene 706:172-180 PMID:31082499
Demir AB and Koc A (2015) High-Copy Overexpression Screening Reveals PDR5 as the Main Doxorubicin Resistance Gene in Yeast. PLoS One 10(12):e0145108 PMID:26690737
Papur OS, et al. (2015) Functional characterization of new mutations in Wilson disease gene (ATP7B) using the yeast model. J Trace Elem Med Biol 31:33-6 PMID:26004889
Kaya A, et al. (2014) Thiol peroxidase deficiency leads to increased mutational load and decreased fitness in Saccharomyces cerevisiae. Genetics 198(3):905-17 PMID:25173844
Muid KA, et al. (2014) Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process. Biochem Biophys Res Commun 444(2):260-3 PMID:24462872
Hacioglu E, et al. (2012) Identification of respiratory chain gene mutations that shorten replicative life span in yeast. Exp Gerontol 47(2):149-53 PMID:22137892
Fomenko DE, et al. (2011) Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc Natl Acad Sci U S A 108(7):2729-34 PMID:21282621
Uluisik I, et al. (2011) Boron stress activates the general amino acid control mechanism and inhibits protein synthesis. PLoS One 6(11):e27772 PMID:22114689
Demir AB and Koc A (2010) Assessment of chronological lifespan dependent molecular damages in yeast lacking mitochondrial antioxidant genes. Biochem Biophys Res Commun 400(1):106-10 PMID:20707985
Kaya A, et al. (2010) Compartmentalization and regulation of mitochondrial function by methionine sulfoxide reductases in yeast. Biochemistry 49(39):8618-25 PMID:20799725
Kaya A, et al. (2009) Identification of a novel system for boron transport: Atr1 is a main boron exporter in yeast. Mol Cell Biol 29(13):3665-74 PMID:19414602
Le DT, et al. (2009) Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J Biol Chem 284(7):4354-64 PMID:19049972
Koc A and Merrill GF (2007) Checkpoint deficient rad53-11 yeast cannot accumulate dNTPs in response to DNA damage. Biochem Biophys Res Commun 353(2):527-30 PMID:17188244
Koc A, et al. (2004) Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and -independent components of aging. Proc Natl Acad Sci U S A 101(21):7999-8004 PMID:15141092
Kryukov GV, et al. (2002) Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci U S A 99(7):4245-50 PMID:11929995
Kumar RA, et al. (2002) Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J Biol Chem 277(40):37527-35 PMID:12145281