Prada-Luengo I, et al. (2020) Replicative aging is associated with loss of genetic heterogeneity from extrachromosomal circular DNA in Saccharomyces cerevisiae. Nucleic Acids Res 48(14):7883-7898 PMID:32609810
Bojsen R, et al. (2016) A common mechanism involving the TORC1 pathway can lead to amphotericin B-persistence in biofilm and planktonic Saccharomyces cerevisiae populations. Sci Rep 6:21874 PMID:26903175
Regenberg B, et al. (2016) Clonal yeast biofilms can reap competitive advantages through cell differentiation without being obligatorily multicellular. Proc Biol Sci 283(1842) PMID:27807261
Larsen CE, et al. (2015) Antifungal properties of peptidomimetics with an arginine-[β-(2,5,7-tri-tert-butylindol-3-yl)alanine]-arginine motif against Saccharomyces cerevisiae and Zygosaccharomyces bailii. FEMS Yeast Res 15(3) PMID:25761917
Møller HD, et al. (2015) Formation of Extrachromosomal Circular DNA from Long Terminal Repeats of Retrotransposons in Saccharomyces cerevisiae. G3 (Bethesda) 6(2):453-62 PMID:26681518
Bojsen R, et al. (2013) The synthetic amphipathic peptidomimetic LTX109 is a potent fungicide that disturbs plasma membrane integrity in a sphingolipid dependent manner. PLoS One 8(7):e69483 PMID:23874964
Møller HD, et al. (2013) A model for generating several adaptive phenotypes from a single genetic event: Saccharomyces cerevisiae GAP1 as a potential bet-hedging switch. Commun Integr Biol 6(3):e23933 PMID:23713139
Bojsen RK, et al. (2012) Saccharomyces cerevisiae--a model to uncover molecular mechanisms for yeast biofilm biology. FEMS Immunol Med Microbiol 65(2):169-82 PMID:22332975
Torbensen R, et al. (2012) Amino acid transporter genes are essential for FLO11-dependent and FLO11-independent biofilm formation and invasive growth in Saccharomyces cerevisiae. PLoS One 7(7):e41272 PMID:22844449
Gresham D, et al. (2010) Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc Natl Acad Sci U S A 107(43):18551-6 PMID:20937885
de Jongh WA, et al. (2008) The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae. Biotechnol Bioeng 101(2):317-26 PMID:18421797
Bro C, et al. (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8(2):102-11 PMID:16289778
Eckert-Boulet N, et al. (2006) Deletion of RTS1, encoding a regulatory subunit of protein phosphatase 2A, results in constitutive amino acid signaling via increased Stp1p processing. Eukaryot Cell 5(1):174-9 PMID:16400180
Regenberg B, et al. (2006) Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol 7(11):R107 PMID:17105650
Usaite R, et al. (2006) Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, L-alanine, or L-glutamine limitation. Appl Environ Microbiol 72(9):6194-203 PMID:16957246
Bro C, et al. (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71(11):6465-72 PMID:16269670
Eckert-Boulet N, et al. (2005) Grr1p is required for transcriptional induction of amino acid permease genes and proper transcriptional regulation of genes in carbon metabolism of Saccharomyces cerevisiae. Curr Genet 47(3):139-49 PMID:15611869
Bro C, et al. (2004) Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism. Biotechnol Bioeng 85(3):269-76 PMID:14748081
Eckert-Boulet N, et al. (2004) Transcriptional profiling of extracellular amino acid sensing in Saccharomyces cerevisiae and the role of Stp1p and Stp2p. Yeast 21(8):635-48 PMID:15197729
Piper MD, et al. (2002) Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277(40):37001-8 PMID:12121991
Regenberg B and Hansen J (2001) GAP1, a novel selection and counter-selection marker for multiple gene disruptions in Saccharomyces cerevisiae. Yeast 18(4):389
Regenberg B and Kielland-Brandt MC (2001) Amino acid residues important for substrate specificity of the amino acid permeases Can1p and Gnp1p in Saccharomyces cerevisiae. Yeast 18(15):1429-40 PMID:11746604
Regenberg B and Hansen J (2000) GAP1, a novel selection and counter-selection marker for multiple gene disruptions in Saccharomyces cerevisiae. Yeast 16(12):1111-9 PMID:10953083
Regenberg B, et al. (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36(6):317-28 PMID:10654085
Didion T, et al. (1998) The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol Microbiol 27(3):643-50 PMID:9489675
Regenberg B, et al. (1998) Dip5p mediates high-affinity and high-capacity transport of L-glutamate and L-aspartate in Saccharomyces cerevisiae. Curr Genet 33(3):171-7 PMID:9508791
Regenberg B, et al. (1995) C-terminal deletion analysis of plant plasma membrane H(+)-ATPase: yeast as a model system for solute transport across the plant plasma membrane. Plant Cell 7(10):1655-66 PMID:7580256