Blank HM, et al. (2024) Translational control of MPS1 links protein synthesis with the initiation of cell division and spindle pole body duplication in Saccharomyces cerevisiae. Genetics 227(3) PMID:38713088
King BR, et al. (2021) Microtubule-associated proteins and motors required for ectopic microtubule array formation in Saccharomyces cerevisiae. Genetics 218(2) PMID:33752231
Alonso A, et al. (2020) Yeast pericentrin/Spc110 contains multiple domains required for tethering the γ-tubulin complex to the centrosome. Mol Biol Cell 31(14):1437-1452 PMID:32374651
Jones MH, et al. (2018) Key phosphorylation events in Spc29 and Spc42 guide multiple steps of yeast centrosome duplication. Mol Biol Cell 29(19):2280-2291 PMID:30044722
O'Toole ET, et al. (2017) Building Cell Structures in Three Dimensions: Electron Tomography Methods for Budding Yeast. Cold Spring Harb Protoc 2017(3) PMID:28250232
Viswanath S, et al. (2017) The molecular architecture of the yeast spindle pole body core determined by Bayesian integrative modeling. Mol Biol Cell 28(23):3298-3314 PMID:28814505
Morphew MK, et al. (2015) Metallothionein as a clonable tag for protein localization by electron microscopy of cells. J Microsc 260(1):20-9 PMID:25974385
Peng Y, et al. (2015) Interaction of CK1δ with γTuSC ensures proper microtubule assembly and spindle positioning. Mol Biol Cell 26(13):2505-18 PMID:25971801
Hepperla AJ, et al. (2014) Minus-end-directed Kinesin-14 motors align antiparallel microtubules to control metaphase spindle length. Dev Cell 31(1):61-72 PMID:25313961
Nannas NJ, et al. (2014) Chromosomal attachments set length and microtubule number in the Saccharomyces cerevisiae mitotic spindle. Mol Biol Cell 25(25):4034-48 PMID:25318669
Choy JS, et al. (2013) Genome-wide haploinsufficiency screen reveals a novel role for γ-TuSC in spindle organization and genome stability. Mol Biol Cell 24(17):2753-63 PMID:23825022
Meyer RE, et al. (2013) Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast. Science 339(6123):1071-4 PMID:23371552
Nazarova E, et al. (2013) Distinct roles for antiparallel microtubule pairing and overlap during early spindle assembly. Mol Biol Cell 24(20):3238-50 PMID:23966467
Rock JM, et al. (2013) Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes. Science 340(6134):871-5 PMID:23579499
Stemm-Wolf AJ, et al. (2013) Sfr13, a member of a large family of asymmetrically localized Sfi1-repeat proteins, is important for basal body separation and stability in Tetrahymena thermophila. J Cell Sci 126(Pt 7):1659-71 PMID:23426847
Klenchin VA, et al. (2011) Structure-function analysis of the C-terminal domain of CNM67, a core component of the Saccharomyces cerevisiae spindle pole body. J Biol Chem 286(20):18240-50 PMID:21454609
Shirk K, et al. (2011) The Aurora kinase Ipl1 is necessary for spindle pole body cohesion during budding yeast meiosis. J Cell Sci 124(Pt 17):2891-6 PMID:21878496
Crasta K, et al. (2008) Inactivation of Cdh1 by synergistic action of Cdk1 and polo kinase is necessary for proper assembly of the mitotic spindle. Nat Cell Biol 10(6):665-75 PMID:18500339
Gardner MK, et al. (2008) The microtubule-based motor Kar3 and plus end-binding protein Bim1 provide structural support for the anaphase spindle. J Cell Biol 180(1):91-100 PMID:18180364
Araki Y, et al. (2006) The Saccharomyces cerevisiae spindle pole body (SPB) component Nbp1p is required for SPB membrane insertion and interacts with the integral membrane proteins Ndc1p and Mps2p. Mol Biol Cell 17(4):1959-70 PMID:16436507
Beliakova-Bethell N, et al. (2006) Virus-like particles of the Ty3 retrotransposon assemble in association with P-body components. RNA 12(1):94-101 PMID:16373495
Jaspersen SL, et al. (2006) The Sad1-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope. J Cell Biol 174(5):665-75 PMID:16923827
Yoder TJ, et al. (2005) Analysis of a spindle pole body mutant reveals a defect in biorientation and illuminates spindle forces. Mol Biol Cell 16(1):141-52 PMID:15525672
Jaspersen SL and Winey M (2004) The budding yeast spindle pole body: structure, duplication, and function. Annu Rev Cell Dev Biol 20:1-28 PMID:15473833
Jaspersen SL, et al. (2004) Cdc28/Cdk1 regulates spindle pole body duplication through phosphorylation of Spc42 and Mps1. Dev Cell 7(2):263-74 PMID:15296722
Lau CK, et al. (2004) A novel allele of Saccharomyces cerevisiae NDC1 reveals a potential role for the spindle pole body component Ndc1p in nuclear pore assembly. Eukaryot Cell 3(2):447-58 PMID:15075274
Park CJ, et al. (2004) Requirement for Bbp1p in the proper mitotic functions of Cdc5p in Saccharomyces cerevisiae. Mol Biol Cell 15(4):1711-23 PMID:14767068
Fisk HA, et al. (2003) Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc Natl Acad Sci U S A 100(25):14875-80 PMID:14657364
Burns CG, et al. (2002) Removal of a single alpha-tubulin gene intron suppresses cell cycle arrest phenotypes of splicing factor mutations in Saccharomyces cerevisiae. Mol Cell Biol 22(3):801-15 PMID:11784857
Castillo AR, et al. (2002) The yeast protein kinase Mps1p is required for assembly of the integral spindle pole body component Spc42p. J Cell Biol 156(3):453-65 PMID:11827982
Jaspersen SL, et al. (2002) Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. J Cell Biol 159(6):945-56 PMID:12486115
McBratney S and Winey M (2002) Mutant membrane protein of the budding yeast spindle pole body is targeted to the endoplasmic reticulum degradation pathway. Genetics 162(2):567-78 PMID:12399372
Friedman DB, et al. (2001) Yeast Mps1p phosphorylates the spindle pole component Spc110p in the N-terminal domain. J Biol Chem 276(21):17958-67 PMID:11278681
Giddings TH, et al. (2001) Using rapid freeze and freeze-substitution for the preparation of yeast cells for electron microscopy and three-dimensional analysis. Methods Cell Biol 67:27-42 PMID:11550475
Jones MH, et al. (2001) Yeast Dam1p has a role at the kinetochore in assembly of the mitotic spindle. Proc Natl Acad Sci U S A 98(24):13675-80 PMID:11698664
Kerscher O, et al. (2001) Novel role for a Saccharomyces cerevisiae nucleoporin, Nup170p, in chromosome segregation. Genetics 157(4):1543-53 PMID:11290711
Schaerer F, et al. (2001) Cnm67p is a spacer protein of the Saccharomyces cerevisiae spindle pole body outer plaque. Mol Biol Cell 12(8):2519-33 PMID:11514632
Chial HJ, et al. (2000) Yeast Eap1p, an eIF4E-associated protein, has a separate function involving genetic stability. Curr Biol 10(23):1519-22 PMID:11114520
Daum JR, et al. (2000) The spindle checkpoint of Saccharomyces cerevisiae responds to separable microtubule-dependent events. Curr Biol 10(21):1375-8 PMID:11084338
Straight PD, et al. (2000) Mps1p regulates meiotic spindle pole body duplication in addition to having novel roles during sporulation. Mol Biol Cell 11(10):3525-37 PMID:11029053
Chial HJ and Winey M (1999) Mechanisms of genetic instability revealed by analysis of yeast spindle pole body duplication. Biol Cell 91(6):439-50 PMID:10519004
Chial HJ, et al. (1999) Altered dosage of the Saccharomyces cerevisiae spindle pole body duplication gene, NDC1, leads to aneuploidy and polyploidy. Proc Natl Acad Sci U S A 96(18):10200-5 PMID:10468586
Jones MH, et al. (1999) Yeast Dam1p is required to maintain spindle integrity during mitosis and interacts with the Mps1p kinase. Mol Biol Cell 10(7):2377-91 PMID:10397771
Muñoz-Centeno MC, et al. (1999) Saccharomyces cerevisiae MPS2 encodes a membrane protein localized at the spindle pole body and the nuclear envelope. Mol Biol Cell 10(7):2393-406 PMID:10397772
O'Toole ET, et al. (1999) High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol Biol Cell 10(6):2017-31 PMID:10359612
Chial HJ, et al. (1998) Saccharomyces cerevisiae Ndc1p is a shared component of nuclear pore complexes and spindle pole bodies. J Cell Biol 143(7):1789-800 PMID:9864355
He X, et al. (1998) Mph1, a member of the Mps1-like family of dual specificity protein kinases, is required for the spindle checkpoint in S. pombe. J Cell Sci 111 ( Pt 12):1635-47 PMID:9601094
Komarnitsky SI, et al. (1998) DBF2 protein kinase binds to and acts through the cell cycle-regulated MOB1 protein. Mol Cell Biol 18(4):2100-7 PMID:9528782
Luca FC and Winey M (1998) MOB1, an essential yeast gene required for completion of mitosis and maintenance of ploidy. Mol Biol Cell 9(1):29-46 PMID:9436989
Schutz AR and Winey M (1998) New alleles of the yeast MPS1 gene reveal multiple requirements in spindle pole body duplication. Mol Biol Cell 9(4):759-74 PMID:9529376
O'Toole ET, et al. (1997) Three-dimensional analysis and ultrastructural design of mitotic spindles from the cdc20 mutant of Saccharomyces cerevisiae. Mol Biol Cell 8(1):1-11 PMID:9017591
Schutz AR, et al. (1997) The yeast CDC37 gene interacts with MPS1 and is required for proper execution of spindle pole body duplication. J Cell Biol 136(5):969-82 PMID:9060463
Winey M, et al. (1997) Nuclear pore complex number and distribution throughout the Saccharomyces cerevisiae cell cycle by three-dimensional reconstruction from electron micrographs of nuclear envelopes. Mol Biol Cell 8(11):2119-32 PMID:9362057
Hardwick KG, et al. (1996) Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 273(5277):953-6 PMID:8688079
Mathias N, et al. (1996) Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1-to-S-phase transition and identifies a conserved family of proteins. Mol Cell Biol 16(12):6634-43 PMID:8943317
Weiss E and Winey M (1996) The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 132(1-2):111-23 PMID:8567717
Lauzé E, et al. (1995) Yeast spindle pole body duplication gene MPS1 encodes an essential dual specificity protein kinase. EMBO J 14(8):1655-63 PMID:7737118
Winey M, et al. (1995) Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J Cell Biol 129(6):1601-15 PMID:7790357
Duden R, et al. (1994) Yeast beta- and beta'-coat proteins (COP). Two coatomer subunits essential for endoplasmic reticulum-to-Golgi protein traffic. J Biol Chem 269(39):24486-95 PMID:7929113
Vallen EA, et al. (1994) Genetic interactions between CDC31 and KAR1, two genes required for duplication of the microtubule organizing center in Saccharomyces cerevisiae. Genetics 137(2):407-22 PMID:8070654
DeMarini DJ, et al. (1992) SEN1, a positive effector of tRNA-splicing endonuclease in Saccharomyces cerevisiae. Mol Cell Biol 12(5):2154-64 PMID:1569945
Winey M, et al. (1991) MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 114(4):745-54 PMID:1869587
Culbertson MR and Winey M (1989) Split tRNA genes and their products: a paradigm for the study of cell function and evolution. Yeast 5(6):405-27 PMID:2694676
Mathison L, et al. (1989) Mutations in the anticodon stem affect removal of introns from pre-tRNA in Saccharomyces cerevisiae. Mol Cell Biol 9(10):4220-8 PMID:2685549
Winey M, et al. (1989) A synthetic intron in a naturally intronless yeast pre-tRNA is spliced efficiently in vivo. Mol Cell Biol 9(1):329-31 PMID:2648132
Winey M and Culbertson MR (1988) Mutations affecting the tRNA-splicing endonuclease activity of Saccharomyces cerevisiae. Genetics 118(4):609-17 PMID:3284787
Winey M, et al. (1986) Splicing of a yeast proline tRNA containing a novel suppressor mutation in the anticodon stem. J Mol Biol 192(1):49-63 PMID:3546704