Primary Literature
TEXT HERE
- Wang J, et al. (2022) Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation. Cell 185(24):4474-4487.e17 PMID: 36334590
- Gaikwad S, et al. (2021) Reprogramming of translation in yeast cells impaired for ribosome recycling favors short, efficiently translated mRNAs. Elife 10 PMID: 33764298
- Gast V, et al. (2021) The Yeast eIF2 Kinase Gcn2 Facilitates H<sub>2</sub>O<sub>2</sub>-Mediated Feedback Inhibition of Both Protein Synthesis and Endoplasmic Reticulum Oxidative Folding during Recombinant Protein Production. Appl Environ Microbiol 87(15):e0030121 PMID: 34047633
- Kratzat H, et al. (2021) A structural inventory of native ribosomal ABCE1-43S pre-initiation complexes. EMBO J 40(1):e105179 PMID: 33289941
- Llácer JL, et al. (2021) Large-scale movement of eIF3 domains during translation initiation modulate start codon selection. Nucleic Acids Res 49(20):11491-11511 PMID: 34648019
- Pochopien AA, et al. (2021) Structure of Gcn1 bound to stalled and colliding 80S ribosomes. Proc Natl Acad Sci U S A 118(14) PMID: 33790014
- Ramesh R, et al. (2021) Asp56 in actin is critical for the full activity of the amino acid starvation-responsive kinase Gcn2. FEBS Lett 595(14):1886-1901 PMID: 34096057
- Romero AM, et al. (2021) Iron in Translation: From the Beginning to the End. Microorganisms 9(5) PMID: 34068342
- Young DJ, et al. (2021) 40S ribosome profiling reveals distinct roles for Tma20/Tma22 (MCT-1/DENR) and Tma64 (eIF2D) in 40S subunit recycling. Nat Commun 12(1):2976 PMID: 34016977
- Calafí C, et al. (2020) Overexpression of budding yeast protein phosphatase Ppz1 impairs translation. Biochim Biophys Acta Mol Cell Res 1867(8):118727 PMID: 32339526
- Kotzaeridou U, et al. (2020) Novel pathogenic EIF2S3 missense variants causing clinically variable MEHMO syndrome with impaired eIF2γ translational function, and literature review. Clin Genet 98(5):507-514 PMID: 32799315
- Matsuki Y, et al. (2020) Ribosomal protein S7 ubiquitination during ER stress in yeast is associated with selective mRNA translation and stress outcome. Sci Rep 10(1):19669 PMID: 33184379
- Matsuki Y, et al. (2020) Crucial role of leaky initiation of uORF3 in the downregulation of HNT1 by ER stress. Biochem Biophys Res Commun 528(1):186-192 PMID: 32475637
- Meydan S and Guydosh NR (2020) Disome and Trisome Profiling Reveal Genome-wide Targets of Ribosome Quality Control. Mol Cell 79(4):588-602.e6 PMID: 32615089
- Pandey P, et al. (2020) Comparative Proteomics Analysis Reveals Unique Early Signaling Response of <i>Saccharomyces cerevisiae</i> to Oxidants with Different Mechanism of Action. Int J Mol Sci 22(1) PMID: 33375274
- Ramesh R and Sattlegger E (2020) Domain II of the translation elongation factor eEF1A is required for Gcn2 kinase inhibition. FEBS Lett 594(14):2266-2281 PMID: 32359173
- Romero AM, et al. (2020) Global translational repression induced by iron deficiency in yeast depends on the Gcn2/eIF2α pathway. Sci Rep 10(1):233 PMID: 31937829
- Wagner S, et al. (2020) Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes. Mol Cell 79(4):546-560.e7 PMID: 32589964
- Walvekar AS, et al. (2020) Methylated PP2A stabilizes Gcn4 to enable a methionine-induced anabolic program. J Biol Chem 295(52):18390-18405 PMID: 33122193
- Gregory LC, et al. (2019) Impaired EIF2S3 function associated with a novel phenotype of X-linked hypopituitarism with glucose dysregulation. EBioMedicine 42:470-480 PMID: 30878599
- Jindal S, et al. (2019) Role of the uS9/yS16 C-terminal tail in translation initiation and elongation in Saccharomyces cerevisiae. Nucleic Acids Res 47(2):806-823 PMID: 30481328
- Makeeva DS, et al. (2019) Translatome and transcriptome analysis of TMA20 (MCT-1) and TMA64 (eIF2D) knockout yeast strains. Data Brief 23:103701 PMID: 30815525
- Thakur A, et al. (2019) A network of eIF2β interactions with eIF1 and Met-tRNAi promotes accurate start codon selection by the translation preinitiation complex. Nucleic Acids Res 47(5):2574-2593 PMID: 30576497
- Young-Baird SK, et al. (2019) MEHMO syndrome mutation EIF2S3-I259M impairs initiator Met-tRNAiMet binding to eukaryotic translation initiation factor eIF2. Nucleic Acids Res 47(2):855-867 PMID: 30517694
- Caballero-Molada M, et al. (2018) The Gcn2-eIF2α pathway connects iron and amino acid homeostasis in <i>Saccharomyces cerevisiae</i>. Biochem J 475(8):1523-1534 PMID: 29626156
- Duncan CDS, et al. (2018) General amino acid control in fission yeast is regulated by a nonconserved transcription factor, with functions analogous to Gcn4/Atf4. Proc Natl Acad Sci U S A 115(8) PMID: 29432178
- Hu Z, et al. (2018) Ssd1 and Gcn2 suppress global translation efficiency in replicatively aged yeast while their activation extends lifespan. Elife 7 PMID: 30117416
- Izquierdo Y, et al. (2018) Arabidopsis nonresponding to oxylipins locus NOXY7 encodes a yeast GCN1 homolog that mediates noncanonical translation regulation and stress adaptation. Plant Cell Environ 41(6):1438-1452 PMID: 29499090
- Llácer JL, et al. (2018) Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition. Elife 7 PMID: 30475211
- Thakur A and Hinnebusch AG (2018) eIF1 Loop 2 interactions with Met-tRNA<sub>i</sub> control the accuracy of start codon selection by the scanning preinitiation complex. Proc Natl Acad Sci U S A 115(18):E4159-E4168 PMID: 29666249
- Uppala JK, et al. (2018) Phosphorylation of translation initiation factor eIF2α at Ser51 depends on site- and context-specific information. FEBS Lett 592(18):3116-3125 PMID: 30070006
- Ballester-Tomás L, et al. (2017) Inappropriate translation inhibition and P-body formation cause cold-sensitivity in tryptophan-auxotroph yeast mutants. Biochim Biophys Acta Mol Cell Res 1864(2):314-323 PMID: 27864078
- Cartwright SP, et al. (2017) Constitutively-stressed yeast strains are high-yielding for recombinant Fps1: implications for the translational regulation of an aquaporin. Microb Cell Fact 16(1):41 PMID: 28279185
- Skopkova M, et al. (2017) EIF2S3 Mutations Associated with Severe X-Linked Intellectual Disability Syndrome MEHMO. Hum Mutat 38(4):409-425 PMID: 28055140
- Visweswaraiah J and Hinnebusch AG (2017) Interface between 40S exit channel protein uS7/Rps5 and eIF2α modulates start codon recognition in vivo. Elife 6 PMID: 28169832
- Wang L, et al. (2017) The inhibition of protein translation mediated by AtGCN1 is essential for cold tolerance in Arabidopsis thaliana. Plant Cell Environ 40(1):56-68 PMID: 27577186
- Yuan W, et al. (2017) General Control Nonderepressible 2 (GCN2) Kinase Inhibits Target of Rapamycin Complex 1 in Response to Amino Acid Starvation in <i>Saccharomyces cerevisiae</i>. J Biol Chem 292(7):2660-2669 PMID: 28057755
- Aitken CE, et al. (2016) Eukaryotic translation initiation factor 3 plays distinct roles at the mRNA entry and exit channels of the ribosomal preinitiation complex. Elife 5 PMID: 27782884
- Golovko A, et al. (2016) The eIF2A knockout mouse. Cell Cycle 15(22):3115-3120 PMID: 27686860
- Silva RC, et al. (2016) Perturbations in actin dynamics reconfigure protein complexes that modulate GCN2 activity and promote an eIF2 response. J Cell Sci 129(24):4521-4533 PMID: 27852836
- Araki T, et al. (2015) Tetracaine, a local anesthetic, preferentially induces translational inhibition with processing body formation rather than phosphorylation of eIF2α in yeast. Curr Genet 61(1):43-53 PMID: 25119673
- Burroughs AM, et al. (2015) The eukaryotic translation initiation regulator CDC123 defines a divergent clade of ATP-grasp enzymes with a predicted role in novel protein modifications. Biol Direct 10:21 PMID: 25976611
- Higgins R, et al. (2015) The Unfolded Protein Response Triggers Site-Specific Regulatory Ubiquitylation of 40S Ribosomal Proteins. Mol Cell 59(1):35-49 PMID: 26051182
- Knutsen JH, et al. (2015) Stress-induced inhibition of translation independently of eIF2α phosphorylation. J Cell Sci 128(23):4420-7 PMID: 26493332
- Lageix S, et al. (2015) Interaction between the tRNA-binding and C-terminal domains of Yeast Gcn2 regulates kinase activity in vivo. PLoS Genet 11(2):e1004991 PMID: 25695491
- Lee SJ, et al. (2015) Gcn1 contacts the small ribosomal protein Rps10, which is required for full activation of the protein kinase Gcn2. Biochem J 466(3):547-59 PMID: 25437641
- Li JJ, et al. (2015) Baculovirus protein PK2 subverts eIF2α kinase function by mimicry of its kinase domain C-lobe. Proc Natl Acad Sci U S A 112(32):E4364-73 PMID: 26216977
- Llácer JL, et al. (2015) Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex. Mol Cell 59(3):399-412 PMID: 26212456
- Majumder M, et al. (2015) Residues required for phosphorylation of translation initiation factor eIF2α under diverse stress conditions are divergent between yeast and human. Int J Biochem Cell Biol 59:135-41 PMID: 25541374
- Menacho-Márquez M, et al. (2015) eIF2 kinases mediate β-lapachone toxicity in yeast and human cancer cells. Cell Cycle 14(4):630-40 PMID: 25590579
- Panvert M, et al. (2015) Cdc123, a Cell Cycle Regulator Needed for eIF2 Assembly, Is an ATP-Grasp Protein with Unique Features. Structure 23(9):1596-1608 PMID: 26211610
- Rojas M, et al. (2015) An eIF2α-binding motif in protein phosphatase 1 subunit GADD34 and its viral orthologs is required to promote dephosphorylation of eIF2α. Proc Natl Acad Sci U S A 112(27):E3466-75 PMID: 26100893
- Silva RC, et al. (2015) The Gcn2 Regulator Yih1 Interacts with the Cyclin Dependent Kinase Cdc28 and Promotes Cell Cycle Progression through G2/M in Budding Yeast. PLoS One 10(7):e0131070 PMID: 26176233
- Visweswaraiah J, et al. (2015) The β-hairpin of 40S exit channel protein Rps5/uS7 promotes efficient and accurate translation initiation in vivo. Elife 4 PMID: 26134896
- Cambiaghi TD, et al. (2014) Evolutionarily conserved IMPACT impairs various stress responses that require GCN1 for activating the eIF2 kinase GCN2. Biochem Biophys Res Commun 443(2):592-7 PMID: 24333428
- Castilho BA, et al. (2014) Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta 1843(9):1948-68 PMID: 24732012
- Dey M, et al. (2014) Activation of protein kinase PKR requires dimerization-induced cis-phosphorylation within the activation loop. J Biol Chem 289(9):5747-57 PMID: 24338483
- Dong J, et al. (2014) Conserved residues in yeast initiator tRNA calibrate initiation accuracy by regulating preinitiation complex stability at the start codon. Genes Dev 28(5):502-20 PMID: 24589778
- He H, et al. (2014) Crystal structures of GCN2 protein kinase C-terminal domains suggest regulatory differences in yeast and mammals. J Biol Chem 289(21):15023-34 PMID: 24719324
- Hirose T and Horvitz HR (2014) The translational regulators GCN-1 and ABCF-3 act together to promote apoptosis in C. elegans. PLoS Genet 10(8):e1004512 PMID: 25101958
- Hussain T, et al. (2014) Structural changes enable start codon recognition by the eukaryotic translation initiation complex. Cell 159(3):597-607 PMID: 25417110
- Katz MJ, et al. (2014) Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Proc Natl Acad Sci U S A 111(11):4025-30 PMID: 24550463
- Kim HJ, et al. (2014) Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet 46(2):152-60 PMID: 24336168
- Lageix S, et al. (2014) Enhanced interaction between pseudokinase and kinase domains in Gcn2 stimulates eIF2α phosphorylation in starved cells. PLoS Genet 10(5):e1004326 PMID: 24811037
- Martin-Marcos P, et al. (2014) Enhanced eIF1 binding to the 40S ribosome impedes conformational rearrangements of the preinitiation complex and elevates initiation accuracy. RNA 20(2):150-67 PMID: 24335188
- Perez WB and Kinzy TG (2014) Translation elongation factor 1A mutants with altered actin bundling activity show reduced aminoacyl-tRNA binding and alter initiation via eIF2α phosphorylation. J Biol Chem 289(30):20928-38 PMID: 24936063
- Rojas M, et al. (2014) Protein phosphatase PP1/GLC7 interaction domain in yeast eIF2γ bypasses targeting subunit requirement for eIF2α dephosphorylation. Proc Natl Acad Sci U S A 111(14):E1344-53 PMID: 24706853
- Sundaram A and Grant CM (2014) Oxidant-specific regulation of protein synthesis in Candida albicans. Fungal Genet Biol 67:15-23 PMID: 24699161
- Vlahakis A and Powers T (2014) A role for TOR complex 2 signaling in promoting autophagy. Autophagy 10(11):2085-6 PMID: 25426890
- Vlahakis A, et al. (2014) TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci U S A 111(29):10586-91 PMID: 25002487
- Grousl T, et al. (2013) Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae. PLoS One 8(2):e57083 PMID: 23451152
- Jiménez-Díaz A, et al. (2013) Phosphorylation of initiation factor eIF2 in response to stress conditions is mediated by acidic ribosomal P1/P2 proteins in Saccharomyces cerevisiae. PLoS One 8(12):e84219 PMID: 24391917
- Li MW, et al. (2013) The GCN2 homologue in Arabidopsis thaliana interacts with uncharged tRNA and uses Arabidopsis eIF2α molecules as direct substrates. Plant Biol (Stuttg) 15(1):13-8 PMID: 22672016
- Malzer E, et al. (2013) Coordinate regulation of eIF2α phosphorylation by PPP1R15 and GCN2 is required during Drosophila development. J Cell Sci 126(Pt 6):1406-15 PMID: 23418347
- Martin-Marcos P, et al. (2013) β-Hairpin loop of eukaryotic initiation factor 1 (eIF1) mediates 40 S ribosome binding to regulate initiator tRNA(Met) recruitment and accuracy of AUG selection in vivo. J Biol Chem 288(38):27546-27562 PMID: 23893413
- Naveau M, et al. (2013) Roles of yeast eIF2α and eIF2β subunits in the binding of the initiator methionyl-tRNA. Nucleic Acids Res 41(2):1047-57 PMID: 23193270
- Perzlmaier AF, et al. (2013) Translation initiation requires cell division cycle 123 (Cdc123) to facilitate biogenesis of the eukaryotic initiation factor 2 (eIF2). J Biol Chem 288(30):21537-46 PMID: 23775072
- Silva A, et al. (2013) Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid. PLoS One 8(8):e71294 PMID: 23967187
- Tarumoto Y, et al. (2013) Receptor for activated C-kinase (RACK1) homolog Cpc2 facilitates the general amino acid control response through Gcn2 kinase in fission yeast. J Biol Chem 288(26):19260-8 PMID: 23671279
- Borck G, et al. (2012) eIF2γ mutation that disrupts eIF2 complex integrity links intellectual disability to impaired translation initiation. Mol Cell 48(4):641-6 PMID: 23063529
- Herrmannová A, et al. (2012) Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-initiation complex assembly. Nucleic Acids Res 40(5):2294-311 PMID: 22090426
- Hofmann S, et al. (2012) Translation suppression promotes stress granule formation and cell survival in response to cold shock. Mol Biol Cell 23(19):3786-800 PMID: 22875991
- Hueso G, et al. (2012) A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress. Biochem J 441(1):255-64 PMID: 21919885
- Immanuel TM, et al. (2012) A critical review of translation initiation factor eIF2α kinases in plants - regulating protein synthesis during stress. Funct Plant Biol 39(9):717-735 PMID: 32480823
- Karásková M, et al. (2012) Functional characterization of the role of the N-terminal domain of the c/Nip1 subunit of eukaryotic initiation factor 3 (eIF3) in AUG recognition. J Biol Chem 287(34):28420-34 PMID: 22718758
- Kimpe M, et al. (2012) Pkh1 interacts with and phosphorylates components of the yeast Gcn2/eIF2α system. Biochem Biophys Res Commun 419(1):89-94 PMID: 22326914
- Luna RE, et al. (2012) The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β. Cell Rep 1(6):689-702 PMID: 22813744
- Singh CR, et al. (2012) Sequential eukaryotic translation initiation factor 5 (eIF5) binding to the charged disordered segments of eIF4G and eIF2β stabilizes the 48S preinitiation complex and promotes its shift to the initiation mode. Mol Cell Biol 32(19):3978-89 PMID: 22851688
- Visweswaraiah J, et al. (2012) Overexpression of eukaryotic translation elongation factor 3 impairs Gcn2 protein activation. J Biol Chem 287(45):37757-68 PMID: 22888004
- Waller T, et al. (2012) Evidence that Yih1 resides in a complex with ribosomes. FEBS J 279(10):1761-76 PMID: 22404850
- Cox DJ, et al. (2011) Measuring signaling by the unfolded protein response. Methods Enzymol 491:261-92 PMID: 21329805
- Dey M, et al. (2011) Requirement for kinase-induced conformational change in eukaryotic initiation factor 2alpha (eIF2alpha) restricts phosphorylation of Ser51. Proc Natl Acad Sci U S A 108(11):4316-21 PMID: 21368187
- Iglesias-Gato D, et al. (2011) Guanine nucleotide pool imbalance impairs multiple steps of protein synthesis and disrupts GCN4 translational control in Saccharomyces cerevisiae. Genetics 187(1):105-22 PMID: 20980241
- Kato K, et al. (2011) Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae. Yeast 28(5):339-47 PMID: 21341306
- Martin-Marcos P, et al. (2011) Functional elements in initiation factors 1, 1A, and 2β discriminate against poor AUG context and non-AUG start codons. Mol Cell Biol 31(23):4814-31 PMID: 21930786
- Reineke LC, et al. (2011) Insights into the role of yeast eIF2A in IRES-mediated translation. PLoS One 6(9):e24492 PMID: 21915340
- Shin BS, et al. (2011) Initiation factor eIF2γ promotes eIF2-GTP-Met-tRNAi(Met) ternary complex binding to the 40S ribosome. Nat Struct Mol Biol 18(11):1227-34 PMID: 22002225
- Tripodi F, et al. (2011) Nutritional modulation of CK2 in Saccharomyces cerevisiae: regulating the activity of a constitutive enzyme. Mol Cell Biochem 356(1-2):269-75 PMID: 21750980
- Uluisik I, et al. (2011) Boron stress activates the general amino acid control mechanism and inhibits protein synthesis. PLoS One 6(11):e27772 PMID: 22114689
- Visweswaraiah J, et al. (2011) Evidence that eukaryotic translation elongation factor 1A (eEF1A) binds the Gcn2 protein C terminus and inhibits Gcn2 activity. J Biol Chem 286(42):36568-79 PMID: 21849502
- You T, et al. (2011) Analysing GCN4 translational control in yeast by stochastic chemical kinetics modelling and simulation. BMC Syst Biol 5:131 PMID: 21851603
- Zhang F and Hinnebusch AG (2011) An upstream ORF with non-AUG start codon is translated in vivo but dispensable for translational control of GCN4 mRNA. Nucleic Acids Res 39(8):3128-40 PMID: 21227927
- Berlanga JJ, et al. (2010) Role of mitogen-activated protein kinase Sty1 in regulation of eukaryotic initiation factor 2alpha kinases in response to environmental stress in Schizosaccharomyces pombe. Eukaryot Cell 9(1):194-207 PMID: 19880757
- Cherkasova V, et al. (2010) Snf1 promotes phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 by activating Gcn2 and inhibiting phosphatases Glc7 and Sit4. Mol Cell Biol 30(12):2862-73 PMID: 20404097
- Dmitriev SE, et al. (2010) GTP-independent tRNA delivery to the ribosomal P-site by a novel eukaryotic translation factor. J Biol Chem 285(35):26779-26787 PMID: 20566627
- Lumsden T, et al. (2010) Yeast strains with N-terminally truncated ribosomal protein S5: implications for the evolution, structure and function of the Rps5/Rps7 proteins. Nucleic Acids Res 38(4):1261-72 PMID: 19969550
- Nemoto N, et al. (2010) Yeast 18 S rRNA is directly involved in the ribosomal response to stringent AUG selection during translation initiation. J Biol Chem 285(42):32200-12 PMID: 20699223
- Nomura W, et al. (2010) Methylglyoxal activates Gcn2 to phosphorylate eIF2alpha independently of the TOR pathway in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86(6):1887-94 PMID: 20077113
- Noree C, et al. (2010) Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster. J Cell Biol 190(4):541-51 PMID: 20713603
- Rivera-Ruiz ME, et al. (2010) Post-transcriptional regulation in the myo1Δ mutant of Saccharomyces cerevisiae. BMC Genomics 11:690 PMID: 21126371
- Saini AK, et al. (2010) Regulatory elements in eIF1A control the fidelity of start codon selection by modulating tRNA(i)(Met) binding to the ribosome. Genes Dev 24(1):97-110 PMID: 20048003
- Staschke KA, et al. (2010) Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem 285(22):16893-911 PMID: 20233714
- Watanabe R, et al. (2010) The eukaryotic initiation factor (eIF) 4G HEAT domain promotes translation re-initiation in yeast both dependent on and independent of eIF4A mRNA helicase. J Biol Chem 285(29):21922-33 PMID: 20463023
- You T, et al. (2010) A quantitative model for mRNA translation in Saccharomyces cerevisiae. Yeast 27(10):785-800 PMID: 20306461
- Zaborske JM, et al. (2010) Selective control of amino acid metabolism by the GCN2 eIF2 kinase pathway in Saccharomyces cerevisiae. BMC Biochem 11:29 PMID: 20684782
- Zhang Y and Maduzia LL (2010) Mutations in Caenorhabditis elegans eIF2beta permit translation initiation from non-AUG start codons. Genetics 185(1):141-52 PMID: 20215469
- Dang Do AN, et al. (2009) eIF2alpha kinases GCN2 and PERK modulate transcription and translation of distinct sets of mRNAs in mouse liver. Physiol Genomics 38(3):328-41 PMID: 19509078
- Gárriz A, et al. (2009) A network of hydrophobic residues impeding helix alphaC rotation maintains latency of kinase Gcn2, which phosphorylates the alpha subunit of translation initiation factor 2. Mol Cell Biol 29(6):1592-607 PMID: 19114556
- Grousl T, et al. (2009) Robust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. J Cell Sci 122(Pt 12):2078-88 PMID: 19470581
- Kolitz SE, et al. (2009) Kinetic and thermodynamic analysis of the role of start codon/anticodon base pairing during eukaryotic translation initiation. RNA 15(1):138-52 PMID: 19029312
- Madeo F, et al. (2009) Phylogenetic conservation of the preapoptotic calreticulin exposure pathway from yeast to mammals. Cell Cycle 8(4):639-42 PMID: 19182525
- Morales-Johansson H, et al. (2009) Human protein phosphatase PP6 regulatory subunits provide Sit4-dependent and rapamycin-sensitive sap function in Saccharomyces cerevisiae. PLoS One 4(7):e6331 PMID: 19621075
- Nanda JS, et al. (2009) eIF1 controls multiple steps in start codon recognition during eukaryotic translation initiation. J Mol Biol 394(2):268-85 PMID: 19751744
- Reineke LC and Merrick WC (2009) Characterization of the functional role of nucleotides within the URE2 IRES element and the requirements for eIF2A-mediated repression. RNA 15(12):2264-77 PMID: 19861427
- Zaborske JM, et al. (2009) Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p. J Biol Chem 284(37):25254-67 PMID: 19546227
- Alone PV, et al. (2008) Translation initiation factor 2gamma mutant alters start codon selection independent of Met-tRNA binding. Mol Cell Biol 28(22):6877-88 PMID: 18794367
- Gandin V, et al. (2008) Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature 455(7213):684-8 PMID: 18784653
- Haecker A, et al. (2008) Wollknauel is required for embryo patterning and encodes the Drosophila ALG5 UDP-glucose:dolichyl-phosphate glucosyltransferase. Development 135(10):1745-9 PMID: 18403407
- Jun KO, et al. (2008) Functional equivalence of translation factor eIF5B from Candida albicans and Saccharomyces cerevisiae. Mol Cells 25(2):172-7 PMID: 18414002
- Nomura W, et al. (2008) Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: methylglyoxal attenuates protein synthesis through phosphorylation of eIF2alpha. Biochem Biophys Res Commun 376(4):738-42 PMID: 18812164
- Reibarkh M, et al. (2008) Eukaryotic initiation factor (eIF) 1 carries two distinct eIF5-binding faces important for multifactor assembly and AUG selection. J Biol Chem 283(2):1094-103 PMID: 17974565
- Reineke LC, et al. (2008) A small stem loop element directs internal initiation of the URE2 internal ribosome entry site in Saccharomyces cerevisiae. J Biol Chem 283(27):19011-25 PMID: 18460470
- Cardin E, et al. (2007) Nck-1 selectively modulates eIF2alphaSer51 phosphorylation by a subset of eIF2alpha-kinases. FEBS J 274(22):5865-75 PMID: 17944934
- Cheung YN, et al. (2007) Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo. Genes Dev 21(10):1217-30 PMID: 17504939
- De Filippi L, et al. (2007) Membrane stress is coupled to a rapid translational control of gene expression in chlorpromazine-treated cells. Curr Genet 52(3-4):171-85 PMID: 17710403
- Fekete CA, et al. (2007) N- and C-terminal residues of eIF1A have opposing effects on the fidelity of start codon selection. EMBO J 26(6):1602-14 PMID: 17332751
- Grallert B and Boye E (2007) The Gcn2 kinase as a cell cycle regulator. Cell Cycle 6(22):2768-72 PMID: 17986863
- Guo F and Cavener DR (2007) The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab 5(2):103-14 PMID: 17276353
- Lee B, et al. (2007) Yeast phenotypic assays on translational control. Methods Enzymol 429:105-37 PMID: 17913621
- Passmore LA, et al. (2007) The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol Cell 26(1):41-50 PMID: 17434125
- Valerius O, et al. (2007) The Saccharomyces homolog of mammalian RACK1, Cpc2/Asc1p, is required for FLO11-dependent adhesive growth and dimorphism. Mol Cell Proteomics 6(11):1968-79 PMID: 17704055
- Acker MG, et al. (2006) Interaction between eukaryotic initiation factors 1A and 5B is required for efficient ribosomal subunit joining. J Biol Chem 281(13):8469-75 PMID: 16461768
- Cameroni E, et al. (2006) Phosphatidylinositol 4-phosphate is required for translation initiation in Saccharomyces cerevisiae. J Biol Chem 281(50):38139-49 PMID: 17005563
- Chen ZQ, et al. (2006) The essential vertebrate ABCE1 protein interacts with eukaryotic initiation factors. J Biol Chem 281(11):7452-7 PMID: 16421098
- Jivotovskaya AV, et al. (2006) Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. Mol Cell Biol 26(4):1355-72 PMID: 16449648
- Kapp LD, et al. (2006) Yeast initiator tRNA identity elements cooperate to influence multiple steps of translation initiation. RNA 12(5):751-64 PMID: 16565414
- Wei Z, et al. (2006) Crystal structure of the C-terminal domain of S.cerevisiae eIF5. J Mol Biol 359(1):1-9 PMID: 16616930
- Algire MA, et al. (2005) Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol Cell 20(2):251-62 PMID: 16246727
- Dar AC, et al. (2005) Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR. Cell 122(6):887-900 PMID: 16179258
- Fekete CA, et al. (2005) The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo. EMBO J 24(20):3588-601 PMID: 16193068
- Komar AA, et al. (2005) Novel characteristics of the biological properties of the yeast Saccharomyces cerevisiae eukaryotic initiation factor 2A. J Biol Chem 280(16):15601-11 PMID: 15718232
- Majumdar R and Maitra U (2005) Regulation of GTP hydrolysis prior to ribosomal AUG selection during eukaryotic translation initiation. EMBO J 24(21):3737-46 PMID: 16222335
- Matsuo R, et al. (2005) The yeast eIF4E-associated protein Eap1p attenuates GCN4 translation upon TOR-inactivation. FEBS Lett 579(11):2433-8 PMID: 15848184
- Palmer LK, et al. (2005) Inhibition of translation initiation by volatile anesthetics involves nutrient-sensitive GCN-independent and -dependent processes in yeast. Mol Biol Cell 16(8):3727-39 PMID: 15930127
- Pereira CM, et al. (2005) IMPACT, a protein preferentially expressed in the mouse brain, binds GCN1 and inhibits GCN2 activation. J Biol Chem 280(31):28316-23 PMID: 15937339
- Singh CR, et al. (2005) Eukaryotic translation initiation factor 5 is critical for integrity of the scanning preinitiation complex and accurate control of GCN4 translation. Mol Cell Biol 25(13):5480-91 PMID: 15964804
- Tournu H, et al. (2005) Global role of the protein kinase Gcn2 in the human pathogen Candida albicans. Eukaryot Cell 4(10):1687-96 PMID: 16215176
- Yatime L, et al. (2005) Structure-function relationships of the intact aIF2alpha subunit from the archaeon Pyrococcus abyssi. Biochemistry 44(24):8749-56 PMID: 15952781
- Bieganowski P, et al. (2004) Cdc123 and checkpoint forkhead associated with RING proteins control the cell cycle by controlling eIF2gamma abundance. J Biol Chem 279(43):44656-66 PMID: 15319434
- Deloche O, et al. (2004) A membrane transport defect leads to a rapid attenuation of translation initiation in Saccharomyces cerevisiae. Mol Cell 13(3):357-66 PMID: 14967143
- Dong J, et al. (2004) The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly. J Biol Chem 279(40):42157-68 PMID: 15277527
- Holmes LE, et al. (2004) Loss of translational control in yeast compromised for the major mRNA decay pathway. Mol Cell Biol 24(7):2998-3010 PMID: 15024087
- Kapp LD and Lorsch JR (2004) GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. J Mol Biol 335(4) PMID: 14698289
- Lu PD, et al. (2004) Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 167(1):27-33 PMID: 15479734
- Nameki N, et al. (2004) Solution structure of the RWD domain of the mouse GCN2 protein. Protein Sci 13(8):2089-100 PMID: 15273307
- Nielsen KH, et al. (2004) Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control. EMBO J 23(5):1166-77 PMID: 14976554
- Sattlegger E, et al. (2004) YIH1 is an actin-binding protein that inhibits protein kinase GCN2 and impairs general amino acid control when overexpressed. J Biol Chem 279(29):29952-62 PMID: 15126500
- Singh CR, et al. (2004) Physical association of eukaryotic initiation factor (eIF) 5 carboxyl-terminal domain with the lysine-rich eIF2beta segment strongly enhances its binding to eIF3. J Biol Chem 279(48):49644-55 PMID: 15377664
- Singh CR, et al. (2004) Efficient incorporation of eukaryotic initiation factor 1 into the multifactor complex is critical for formation of functional ribosomal preinitiation complexes in vivo. J Biol Chem 279(30):31910-20 PMID: 15145951
- Valásek L, et al. (2004) Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol Cell Biol 24(21):9437-55 PMID: 15485912
- Weiser DC, et al. (2004) The inhibitor-1 C terminus facilitates hormonal regulation of cellular protein phosphatase-1: functional implications for inhibitor-1 isoforms. J Biol Chem 279(47):48904-14 PMID: 15345721
- Cherkasova VA and Hinnebusch AG (2003) Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev 17(7):859-72 PMID: 12654728
- Kubota H, et al. (2003) Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase GCN2. J Biol Chem 278(23):20457-60 PMID: 12676950
- Maiti T, et al. (2003) Casein kinase II phosphorylates translation initiation factor 5 (eIF5) in Saccharomyces cerevisiae. Yeast 20(2):97-108 PMID: 12518314
- Olsen DS, et al. (2003) Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J 22(2):193-204 PMID: 12514125
- Pomar N, et al. (2003) Functional characterization of Drosophila melanogaster PERK eukaryotic initiation factor 2alpha (eIF2alpha) kinase. Eur J Biochem 270(2):293-306 PMID: 12605680
- Valásek L, et al. (2003) The yeast eIF3 subunits TIF32/a, NIP1/c, and eIF5 make critical connections with the 40S ribosome in vivo. Genes Dev 17(6):786-99 PMID: 12651896
- Algire MA, et al. (2002) Development and characterization of a reconstituted yeast translation initiation system. RNA 8(3):382-97 PMID: 12008673
- Garcia-Barrio M, et al. (2002) Serine 577 is phosphorylated and negatively affects the tRNA binding and eIF2alpha kinase activities of GCN2. J Biol Chem 277(34):30675-83 PMID: 12070158
- Hashimoto NN, et al. (2002) Translation initiation at non-AUG codons mediated by weakened association of eukaryotic initiation factor (eIF) 2 subunits. Biochem J 367(Pt 2):359-68 PMID: 12137565
- Lee JH, et al. (2002) Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation. Proc Natl Acad Sci U S A 99(26):16689-94 PMID: 12471154
- Valásek L, et al. (2002) Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J 21(21):5886-98 PMID: 12411506
- Zhan K, et al. (2002) Phosphorylation of eukaryotic initiation factor 2 by heme-regulated inhibitor kinase-related protein kinases in Schizosaccharomyces pombe is important for fesistance to environmental stresses. Mol Cell Biol 22(20):7134-46 PMID: 12242291
- Zoll WL, et al. (2002) Characterization of mammalian eIF2A and identification of the yeast homolog. J Biol Chem 277(40):37079-87 PMID: 12133843
- Asano K, et al. (2001) Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. EMBO J 20(9):2326-37 PMID: 11331597
- Das S and Maitra U (2001) Functional significance and mechanism of eIF5-promoted GTP hydrolysis in eukaryotic translation initiation. Prog Nucleic Acid Res Mol Biol 70:207-31 PMID: 11642363
- Das S, et al. (2001) Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein. J Biol Chem 276(9):6720-6 PMID: 11092890
- Gaba A, et al. (2001) Physical evidence for distinct mechanisms of translational control by upstream open reading frames. EMBO J 20(22):6453-63 PMID: 11707416
- Goossens A, et al. (2001) The protein kinase Gcn2p mediates sodium toxicity in yeast. J Biol Chem 276(33):30753-60 PMID: 11408481
- Kubota H, et al. (2001) Budding yeast GCN1 binds the GI domain to activate the eIF2alpha kinase GCN2. J Biol Chem 276(20):17591-6 PMID: 11350982
- Marbach I, et al. (2001) Gcn2 mediates Gcn4 activation in response to glucose stimulation or UV radiation not via GCN4 translation. J Biol Chem 276(20):16944-51 PMID: 11350978
- Thompson SR, et al. (2001) Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element. Proc Natl Acad Sci U S A 98(23):12972-7 PMID: 11687653
- Valásek L, et al. (2001) Related eIF3 subunits TIF32 and HCR1 interact with an RNA recognition motif in PRT1 required for eIF3 integrity and ribosome binding. EMBO J 20(4):891-904 PMID: 11179233
- Asano K, et al. (2000) A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev 14(19):2534-46 PMID: 11018020
- Das S and Maitra U (2000) Mutational analysis of mammalian translation initiation factor 5 (eIF5): role of interaction between the beta subunit of eIF2 and eIF5 in eIF5 function in vitro and in vivo. Mol Cell Biol 20(11):3942-50 PMID: 10805737
- Datta B (2000) MAPs and POEP of the roads from prokaryotic to eukaryotic kingdoms. Biochimie 82(2):95-107 PMID: 10727764
- Garcia-Barrio M, et al. (2000) Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2alpha kinase GCN2 is required for GCN2 activation. EMBO J 19(8):1887-99 PMID: 10775272
- Góra M, et al. (2000) Suppressors of translation initiation defect in hem12 locus of Saccharomyces cerevisiae. Acta Biochim Pol 47(1):181-90 PMID: 10961692
- Krauss V and Reuter G (2000) Two genes become one: the genes encoding heterochromatin protein Su(var)3-9 and translation initiation factor subunit eIF-2gamma are joined to a dicistronic unit in holometabolic insects. Genetics 156(3):1157-67 PMID: 11063691
- Kubota H, et al. (2000) GI domain-mediated association of the eukaryotic initiation factor 2alpha kinase GCN2 with its activator GCN1 is required for general amino acid control in budding yeast. J Biol Chem 275(27):20243-6 PMID: 10801780
- Maiti T, et al. (2000) Isolation and functional characterization of a temperature-sensitive mutant of the yeast Saccharomyces cerevisiae in translation initiation factor eIF5: an eIF5-dependent cell-free translation system. Gene 244(1-2):109-18 PMID: 10689193
- Qiu H, et al. (2000) Defects in tRNA processing and nuclear export induce GCN4 translation independently of phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 20(7):2505-16 PMID: 10713174
- Tyzack JK, et al. (2000) ABC50 interacts with eukaryotic initiation factor 2 and associates with the ribosome in an ATP-dependent manner. J Biol Chem 275(44):34131-9 PMID: 10931828
- Berlanga JJ, et al. (1999) Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase. Eur J Biochem 265(2):754-62 PMID: 10504407
- Harding HP, et al. (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271-4 PMID: 9930704
- Laurino JP, et al. (1999) The beta subunit of eukaryotic translation initiation factor 2 binds mRNA through the lysine repeats and a region comprising the C2-C2 motif. Mol Cell Biol 19(1):173-81 PMID: 9858542
- Lee JH, et al. (1999) Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc Natl Acad Sci U S A 96(8):4342-7 PMID: 10200264
- Vilela C, et al. (1999) Post-termination ribosome interactions with the 5'UTR modulate yeast mRNA stability. EMBO J 18(11):3139-52 PMID: 10357825
- Williams BR (1999) PKR; a sentinel kinase for cellular stress. Oncogene 18(45):6112-20 PMID: 10557102
- Choi SK, et al. (1998) Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 280(5370):1757-60 PMID: 9624054
- Romano PR, et al. (1998) Inhibition of double-stranded RNA-dependent protein kinase PKR by vaccinia virus E3: role of complex formation and the E3 N-terminal domain. Mol Cell Biol 18(12):7304-16 PMID: 9819417
- Romano PR, et al. (1998) Autophosphorylation in the activation loop is required for full kinase activity in vivo of human and yeast eukaryotic initiation factor 2alpha kinases PKR and GCN2. Mol Cell Biol 18(4):2282-97 PMID: 9528799
- Sattlegger E, et al. (1998) cpc-3, the Neurospora crassa homologue of yeast GCN2, encodes a polypeptide with juxtaposed eIF2alpha kinase and histidyl-tRNA synthetase-related domains required for general amino acid control. J Biol Chem 273(32):20404-16 PMID: 9685394
- Chaudhuri J, et al. (1997) Biochemical characterization of mammalian translation initiation factor 3 (eIF3). Molecular cloning reveals that p110 subunit is the mammalian homologue of Saccharomyces cerevisiae protein Prt1. J Biol Chem 272(49):30975-83 PMID: 9388245
- Chaudhuri J, et al. (1997) Function of eukaryotic translation initiation factor 1A (eIF1A) (formerly called eIF-4C) in initiation of protein synthesis. J Biol Chem 272(12):7883-91 PMID: 9065455
- Das S, et al. (1997) Specific interaction of eukaryotic translation initiation factor 5 (eIF5) with the beta-subunit of eIF2. J Biol Chem 272(50):31712-8 PMID: 9395514
- Kawagishi-Kobayashi M, et al. (1997) Regulation of the protein kinase PKR by the vaccinia virus pseudosubstrate inhibitor K3L is dependent on residues conserved between the K3L protein and the PKR substrate eIF2alpha. Mol Cell Biol 17(7):4146-58 PMID: 9199350
- Maiti T and Maitra U (1997) Characterization of translation initiation factor 5 (eIF5) from Saccharomyces cerevisiae. Functional homology with mammalian eIF5 and the effect of depletion of eIF5 on protein synthesis in vivo and in vitro. J Biol Chem 272(29):18333-40 PMID: 9218474
- Marton MJ, et al. (1997) Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2alpha kinase GCN2. Mol Cell Biol 17(8):4474-89 PMID: 9234705
- Méthot N, et al. (1997) The human homologue of the yeast Prt1 protein is an integral part of the eukaryotic initiation factor 3 complex and interacts with p170. J Biol Chem 272(2):1110-6 PMID: 8995410
- Erickson FL and Hannig EM (1996) Ligand interactions with eukaryotic translation initiation factor 2: role of the gamma-subunit. EMBO J 15(22):6311-20 PMID: 8947054
- Naranda T, et al. (1996) SUI1/p16 is required for the activity of eukaryotic translation initiation factor 3 in Saccharomyces cerevisiae. Mol Cell Biol 16(5):2307-13 PMID: 8628297
- Taylor DR, et al. (1996) Autophosphorylation sites participate in the activation of the double-stranded-RNA-activated protein kinase PKR. Mol Cell Biol 16(11):6295-302 PMID: 8887659
- Arfin SM, et al. (1995) Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. Proc Natl Acad Sci U S A 92(17):7714-8 PMID: 7644482
- Obermaier B, et al. (1995) Sequence analysis of a 78.6 kb segment of the left end of Saccharomyces cerevisiae chromosome II. Yeast 11(11):1103-12 PMID: 7502586
- Diallinas G and Thireos G (1994) Genetic and biochemical evidence for yeast GCN2 protein kinase polymerization. Gene 143(1):21-7 PMID: 8200534