Primary Literature
TEXT HERE
- Abrhámová K, et al. (2024) Truncating the spliceosomal 'rope protein' Prp45 results in Htz1 dependent phenotypes. RNA Biol 21(1):1-17 PMID: 38711165
- Ayano T and Oki M (2024) IMD2, located near the boundary of heterochromatin regions, is regulated by multiple HAT-related factors. Genes Genet Syst 99 PMID: 38382924
- Georis I, et al. (2024) Differing SAGA module requirements for NCR-sensitive gene transcription in yeast. Yeast 41(4):207-221 PMID: 37357465
- Prajapati HK, et al. (2024) The yeast genome is globally accessible in living cells. Nat Struct Mol Biol PMID: 39587299
- Schofield JA and Hahn S (2024) Transcriptional noise, gene activation, and roles of SAGA and Mediator Tail measured using nucleotide recoding single-cell RNA-seq. Cell Rep 43(8):114593 PMID: 39102335
- Caydasi AK, et al. (2023) SWR1 chromatin remodeling complex prevents mitotic slippage during spindle position checkpoint arrest. Mol Biol Cell 34(2):ar11 PMID: 36542480
- Chau S, et al. (2023) Diverse yeast antiviral systems prevent lethal pathogenesis caused by the L-A mycovirus. Proc Natl Acad Sci U S A 120(11):e2208695120 PMID: 36888656
- Haile ST, et al. (2023) The SAGA HAT module is tethered by its SWIRM domain and modulates activity of the SAGA DUB module. Biochim Biophys Acta Gene Regul Mech 1866(2):194929 PMID: 36965704
- Kamata K, et al. (2023) Spt3 and Spt8 Are Involved in the Formation of a Silencing Boundary by Interacting with TATA-Binding Protein. Biomolecules 13(4) PMID: 37189367
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID: 37968396
- Aguilera P, et al. (2022) Telomeric C-circles localize at nuclear pore complexes in Saccharomyces cerevisiae. EMBO J 41(6):e108736 PMID: 35147992
- Chen Y, et al. (2022) Spt20, a Structural Subunit of the SAGA Complex, Regulates Aspergillus fumigatus Biofilm Formation, Asexual Development, and Virulence. Appl Environ Microbiol 88(1):e0153521 PMID: 34669434
- Huang J, et al. (2022) Acetylation-dependent SAGA complex dimerization promotes nucleosome acetylation and gene transcription. Nat Struct Mol Biol 29(3):261-273 PMID: 35301489
- Joo YJ and Buratowski S (2022) Gds1 Interacts with NuA4 To Promote H4 Acetylation at Ribosomal Protein Genes. Mol Cell Biol 42(1):e0037321 PMID: 34694912
- Mittal C, et al. (2022) An integrated SAGA and TFIID PIC assembly pathway selective for poised and induced promoters. Genes Dev 36(17-18):985-1001 PMID: 36302553
- Vasyliuk D, et al. (2022) Conformational landscape of the yeast SAGA complex as revealed by cryo-EM. Sci Rep 12(1):12306 PMID: 35853968
- Wang D, et al. (2022) Global profiling of regulatory elements in the histone benzoylation pathway. Nat Commun 13(1):1369 PMID: 35296687
- Warfield L, et al. (2022) Yeast Mediator facilitates transcription initiation at most promoters via a Tail-independent mechanism. Mol Cell 82(21):4033-4048.e7 PMID: 36208626
- Chen YC and Dent SYR (2021) Conservation and diversity of the eukaryotic SAGA coactivator complex across kingdoms. Epigenetics Chromatin 14(1):26 PMID: 34112237
- Culbertson SJ and Shogren-Knaak MA (2021) Mechanisms of stimulation of SAGA-mediated nucleosome acetylation by a transcriptional activator. Biochem Biophys Rep 25:100884 PMID: 33437882
- Gowthaman U, et al. (2021) The Hda1 histone deacetylase limits divergent non-coding transcription and restricts transcription initiation frequency. EMBO J 40(23):e108903 PMID: 34661296
- Lim S, et al. (2021) The Spt7 subunit of the SAGA complex is required for the regulation of lifespan in both dividing and nondividing yeast cells. Mech Ageing Dev 196:111480 PMID: 33831401
- Raithatha SA, et al. (2021) Ume6 Acts as a Stable Platform To Coordinate Repression and Activation of Early Meiosis-Specific Genes in Saccharomyces cerevisiae. Mol Cell Biol 41(7):e0037820 PMID: 33941619
- Rossi MJ, et al. (2021) A high-resolution protein architecture of the budding yeast genome. Nature 592(7853):309-314 PMID: 33692541
- Vos SM (2021) Chronicles of the human SAGA co-activator complex. Nat Struct Mol Biol 28(12):959-960 PMID: 34819676
- Donczew R, et al. (2020) Two roles for the yeast transcription coactivator SAGA and a set of genes redundantly regulated by TFIID and SAGA. Elife 9 PMID: 31913117
- Makio T and Wozniak RW (2020) Passive diffusion through nuclear pore complexes regulates levels of the yeast SAGA and SLIK coactivator complexes. J Cell Sci 133(6) PMID: 32051285
- Nuño-Cabanes C, et al. (2020) SAGA-CORE subunit Spt7 is required for correct Ubp8 localization, chromatin association and deubiquitinase activity. Epigenetics Chromatin 13(1):46 PMID: 33115507
- Montanari A, et al. (2019) Gcn5 histone acetyltransferase is present in the mitoplasts. Biol Open 8(2) PMID: 30777878
- Berg MD, et al. (2018) The Pseudokinase Domain of <i>Saccharomyces cerevisiae</i> Tra1 Is Required for Nuclear Localization and Incorporation into the SAGA and NuA4 Complexes. G3 (Bethesda) 8(6):1943-1957 PMID: 29626083
- Dahiya R and Natarajan K (2018) Mutational analysis of TAF6 revealed the essential requirement of the histone-fold domain and the HEAT repeat domain for transcriptional activation. FEBS J 285(8):1491-1510 PMID: 29485702
- Leo M, et al. (2018) Ubiquitin protease Ubp8 is necessary for S. cerevisiae respiration. Biochim Biophys Acta Mol Cell Res PMID: 30077637
- Lu Z, et al. (2018) [Advances in Spt proteins and stress resistance of Saccharomyces cerevisiae]. Sheng Wu Gong Cheng Xue Bao 34(5):653-663 PMID: 29893073
- Mittal C, et al. (2018) Distinct requirements of linker DNA and transcriptional activators in promoting SAGA-mediated nucleosome acetylation. J Biol Chem 293(35):13736-13749 PMID: 30054274
- Sánchez-Gaya V, et al. (2018) Elucidating the Role of Chromatin State and Transcription Factors on the Regulation of the Yeast Metabolic Cycle: A Multi-Omic Integrative Approach. Front Genet 9:578 PMID: 30555512
- Sanz AB, et al. (2018) Slt2 MAPK association with chromatin is required for transcriptional activation of Rlm1 dependent genes upon cell wall stress. Biochim Biophys Acta Gene Regul Mech 1861(11):1029-1039 PMID: 30343693
- Stoppacciaro A, et al. (2018) Epigenetic Factors and Mitochondrial Biology in Yeast: A New Paradigm for the Study of Cancer Metabolism? Front Pharmacol 9:1349 PMID: 30524288
- Vinayachandran V, et al. (2018) Widespread and precise reprogramming of yeast protein-genome interactions in response to heat shock. Genome Res 28(3):357-366 PMID: 29444801
- Dewhurst-Maridor G, et al. (2017) The SAGA complex, together with transcription factors and the endocytic protein Rvs167p, coordinates the reprofiling of gene expression in response to changes in sterol composition in <i>Saccharomyces cerevisiae</i>. Mol Biol Cell 28(20):2637-2649 PMID: 28768829
- Menezes RA, et al. (2017) Mediator, SWI/SNF and SAGA complexes regulate Yap8-dependent transcriptional activation of ACR2 in response to arsenate. Biochim Biophys Acta Gene Regul Mech 1860(4):472-481 PMID: 28188921
- Nemet J, et al. (2017) A meta-analysis reveals complex regulatory properties at Taf14-repressed genes. BMC Genomics 18(1):175 PMID: 28209126
- Uthe H, et al. (2017) Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae. Sci Rep 7:43584 PMID: 28240253
- Canzonetta C, et al. (2016) SAGA complex and Gcn5 are necessary for respiration in budding yeast. Biochim Biophys Acta 1863(12):3160-3168 PMID: 27741413
- Kamata K, et al. (2016) Four domains of Ada1 form a heterochromatin boundary through different mechanisms. Genes Cells 21(10):1125-1136 PMID: 27647735
- Sanz AB, et al. (2016) Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2. Nucleic Acids Res 44(15):7159-72 PMID: 27112564
- Vlaming H, et al. (2016) Direct screening for chromatin status on DNA barcodes in yeast delineates the regulome of H3K79 methylation by Dot1. Elife 5 PMID: 27922451
- Young IA, et al. (2016) Expression and purification of histone H3 proteins containing multiple sites of lysine acetylation using nonsense suppression. Protein Expr Purif 118:92-7 PMID: 26481273
- Canzonetta C, et al. (2015) SAGA DUB-Ubp8 Deubiquitylates Centromeric Histone Variant Cse4. G3 (Bethesda) 6(2):287-98 PMID: 26613948
- Downey M, et al. (2015) Acetylome profiling reveals overlap in the regulation of diverse processes by sirtuins, gcn5, and esa1. Mol Cell Proteomics 14(1):162-76 PMID: 25381059
- Kurabe N, et al. (2015) SGF29 and Sry pathway in hepatocarcinogenesis. World J Biol Chem 6(3):139-47 PMID: 26322172
- Picazo C, et al. (2015) Interplay among Gcn5, Sch9 and mitochondria during chronological aging of wine yeast is dependent on growth conditions. PLoS One 10(2):e0117267 PMID: 25658705
- Basnet H, et al. (2014) Tyrosine phosphorylation of histone H2A by CK2 regulates transcriptional elongation. Nature 516(7530):267-71 PMID: 25252977
- Denoth-Lippuner A, et al. (2014) Role of SAGA in the asymmetric segregation of DNA circles during yeast ageing. Elife 3 PMID: 25402830
- Gao T, et al. (2014) Transcription factors spt3 and spt8 are associated with conidiation, mycelium growth, and pathogenicity in Fusarium graminearum. FEMS Microbiol Lett 351(1):42-50 PMID: 24289742
- Gaupel AC, et al. (2014) High throughput screening identifies modulators of histone deacetylase inhibitors. BMC Genomics 15(1):528 PMID: 24968945
- Han Y, et al. (2014) Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex. EMBO J 33(21):2534-46 PMID: 25216679
- Mittal C, et al. (2014) Nucleosome acetylation sequencing to study the establishment of chromatin acetylation. Anal Biochem 457:51-8 PMID: 24769374
- Mohan RD, et al. (2014) Loss of Drosophila Ataxin-7, a SAGA subunit, reduces H2B ubiquitination and leads to neural and retinal degeneration. Genes Dev 28(3):259-72 PMID: 24493646
- Pamblanco M, et al. (2014) Unveiling novel interactions of histone chaperone Asf1 linked to TREX-2 factors Sus1 and Thp1. Nucleus 5(3):247-59 PMID: 24824343
- Saint M, et al. (2014) The TAF9 C-terminal conserved region domain is required for SAGA and TFIID promoter occupancy to promote transcriptional activation. Mol Cell Biol 34(9):1547-63 PMID: 24550006
- Yibmantasiri P, et al. (2014) Networks of genes modulating the pleiotropic drug response in Saccharomyces cerevisiae. Mol Biosyst 10(1):128-37 PMID: 24201294
- Burke TL, et al. (2013) Direct inhibition of Gcn5 protein catalytic activity by polyglutamine-expanded ataxin-7. J Biol Chem 288(47):34266-34275 PMID: 24129567
- Chang JS and Winston F (2013) Cell-cycle perturbations suppress the slow-growth defect of spt10Δ mutants in Saccharomyces cerevisiae. G3 (Bethesda) 3(3):573-83 PMID: 23450643
- García-Oliver E, et al. (2013) A novel role for Sem1 and TREX-2 in transcription involves their impact on recruitment and H2B deubiquitylation activity of SAGA. Nucleic Acids Res 41(11):5655-68 PMID: 23599000
- Georgakopoulos P, et al. (2013) The Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex in Aspergillus nidulans. PLoS One 8(6):e65221 PMID: 23762321
- Gurskiĭ DIa, et al. (2013) [The role of multifunctional coactivator complex saga in regulation of eukaryotic gene expression]. Mol Biol (Mosk) 47(6):914-21 PMID: 25509852
- Lim S, et al. (2013) Separation of a functional deubiquitylating module from the SAGA complex by the proteasome regulatory particle. Nat Commun 4:2641 PMID: 24136112
- Galdieri L, et al. (2012) Facilitated assembly of the preinitiation complex by separated tail and head/middle modules of the mediator. J Mol Biol 415(3):464-74 PMID: 22137896
- Helmlinger D (2012) New insights into the SAGA complex from studies of the Tra1 subunit in budding and fission yeast. Transcription 3(1):13-8 PMID: 22456315
- Spedale G, et al. (2012) ATAC-king the complexity of SAGA during evolution. Genes Dev 26(6):527-41 PMID: 22426530
- Takahashi H, et al. (2012) The SAGA histone acetyltransferase complex regulates leucine uptake through the Agp3 permease in fission yeast. J Biol Chem 287(45):38158-67 PMID: 22992726
- Zamostna B, et al. (2012) N-terminal domain of nuclear IL-1α shows structural similarity to the C-terminal domain of Snf1 and binds to the HAT/core module of the SAGA complex. PLoS One 7(8):e41801 PMID: 22879895
- Bian C, et al. (2011) Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J 30(14):2829-42 PMID: 21685874
- Ghosh S and Pugh BF (2011) Sequential recruitment of SAGA and TFIID in a genomic response to DNA damage in Saccharomyces cerevisiae. Mol Cell Biol 31(1):190-202 PMID: 20956559
- Han BK and Emr SD (2011) Phosphoinositide [PI(3,5)P2] lipid-dependent regulation of the general transcriptional regulator Tup1. Genes Dev 25(9):984-95 PMID: 21536737
- Lee KK, et al. (2011) Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol Syst Biol 7:503 PMID: 21734642
- Sylvain MA, et al. (2011) Yeast zinc cluster proteins Dal81 and Uga3 cooperate by targeting common coactivators for transcriptional activation of γ-aminobutyrate responsive genes. Genetics 188(3):523-34 PMID: 21515579
- Wilson MA, et al. (2011) Ubp8 and SAGA regulate Snf1 AMP kinase activity. Mol Cell Biol 31(15):3126-35 PMID: 21628526
- Köhler A, et al. (2010) Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Cell 141(4):606-17 PMID: 20434206
- Koutelou E, et al. (2010) Multiple faces of the SAGA complex. Curr Opin Cell Biol 22(3):374-82 PMID: 20363118
- Lai C, et al. (2010) Solution NMR characterization of Sgf73(1-104) indicates that Zn ion is required to stabilize zinc finger motif. Biochem Biophys Res Commun 397(3):436-40 PMID: 20510875
- McCullough SD and Grant PA (2010) Histone acetylation, acetyltransferases, and ataxia--alteration of histone acetylation and chromatin dynamics is implicated in the pathogenesis of polyglutamine-expansion disorders. Adv Protein Chem Struct Biol 79:165-203 PMID: 20621284
- Batta G, et al. (2009) The involvement of the Schizosaccharomyces pombe sep9/spt8 gene in the regulation of septum cleavage. FEMS Yeast Res 9(5):757-67 PMID: 19473263
- Friis RM, et al. (2009) A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res 37(12):3969-80 PMID: 19406923
- Gamper AM, et al. (2009) The STAGA subunit ADA2b is an important regulator of human GCN5 catalysis. Mol Cell Biol 29(1):266-80 PMID: 18936164
- Gunderson FQ and Johnson TL (2009) Acetylation by the transcriptional coactivator Gcn5 plays a novel role in co-transcriptional spliceosome assembly. PLoS Genet 5(10):e1000682 PMID: 19834536
- Hossain MA, et al. (2009) The cap binding complex influences H2B ubiquitination by facilitating splicing of the SUS1 pre-mRNA. RNA 15(8):1515-27 PMID: 19561118
- Kremer SB and Gross DS (2009) SAGA and Rpd3 chromatin modification complexes dynamically regulate heat shock gene structure and expression. J Biol Chem 284(47):32914-31 PMID: 19759026
- Lee KK, et al. (2009) Yeast Sgf73/Ataxin-7 serves to anchor the deubiquitination module into both SAGA and Slik(SALSA) HAT complexes. Epigenetics Chromatin 2(1):2 PMID: 19226466
- Li S and Shogren-Knaak MA (2009) The Gcn5 bromodomain of the SAGA complex facilitates cooperative and cross-tail acetylation of nucleosomes. J Biol Chem 284(14):9411-7 PMID: 19218239
- Nagy Z, et al. (2009) The human SPT20-containing SAGA complex plays a direct role in the regulation of endoplasmic reticulum stress-induced genes. Mol Cell Biol 29(6):1649-60 PMID: 19114550
- Pelka P, et al. (2009) Identification of a second independent binding site for the pCAF acetyltransferase in adenovirus E1A. Virology 391(1):90-8 PMID: 19541337
- Hoke SM, et al. (2008) A conserved central region of yeast Ada2 regulates the histone acetyltransferase activity of Gcn5 and interacts with phospholipids. J Mol Biol 384(4):743-55 PMID: 18950642
- Hoke SM, et al. (2008) Systematic genetic array analysis links the Saccharomyces cerevisiae SAGA/SLIK and NuA4 component Tra1 to multiple cellular processes. BMC Genet 9:46 PMID: 18616809
- Daniel JA and Grant PA (2007) Multi-tasking on chromatin with the SAGA coactivator complexes. Mutat Res 618(1-2):135-48 PMID: 17337012
- Guha N, et al. (2007) Plc1p is required for SAGA recruitment and derepression of Sko1p-regulated genes. Mol Biol Cell 18(7):2419-28 PMID: 17429070
- Hoke SM, et al. (2007) C-terminal processing of yeast Spt7 occurs in the absence of functional SAGA complex. BMC Biochem 8:16 PMID: 17686179
- James N, et al. (2007) A SAGA-independent function of SPT3 mediates transcriptional deregulation in a mutant of the Ccr4-not complex in Saccharomyces cerevisiae. Genetics 177(1):123-35 PMID: 17660549
- Kim B, et al. (2007) The transcription elongation factor TFIIS is a component of RNA polymerase II preinitiation complexes. Proc Natl Acad Sci U S A 104(41):16068-73 PMID: 17913884
- Luthra R, et al. (2007) Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J Biol Chem 282(5):3042-9 PMID: 17158105
- Morris SA, et al. (2007) Identification of histone H3 lysine 36 acetylation as a highly conserved histone modification. J Biol Chem 282(10):7632-40 PMID: 17189264
- Mutiu AI, et al. (2007) The role of histone ubiquitylation and deubiquitylation in gene expression as determined by the analysis of an HTB1(K123R) Saccharomyces cerevisiae strain. Mol Genet Genomics 277(5):491-506 PMID: 17447102
- Mutiu AI, et al. (2007) Structure/function analysis of the phosphatidylinositol-3-kinase domain of yeast tra1. Genetics 177(1):151-66 PMID: 17660562
- Chandy M, et al. (2006) SWI/SNF displaces SAGA-acetylated nucleosomes. Eukaryot Cell 5(10):1738-47 PMID: 17030999
- Guelman S, et al. (2006) Host cell factor and an uncharacterized SANT domain protein are stable components of ATAC, a novel dAda2A/dGcn5-containing histone acetyltransferase complex in Drosophila. Mol Cell Biol 26(3):871-82 PMID: 16428443
- Köhler A, et al. (2006) The mRNA export factor Sus1 is involved in Spt/Ada/Gcn5 acetyltransferase-mediated H2B deubiquitinylation through its interaction with Ubp8 and Sgf11. Mol Biol Cell 17(10):4228-36 PMID: 16855026
- Leroy C, et al. (2006) Independent recruitment of mediator and SAGA by the activator Met4. Mol Cell Biol 26(8):3149-63 PMID: 16581789
- Li S, et al. (2006) Modulation of Rad26- and Rpb9-mediated DNA repair by different promoter elements. J Biol Chem 281(48):36643-51 PMID: 17023424
- Morillo-Huesca M, et al. (2006) A simple in vivo assay for measuring the efficiency of gene length-dependent processes in yeast mRNA biogenesis. FEBS J 273(4):756-69 PMID: 16441662
- van Oevelen CJ, et al. (2006) Snf1p-dependent Spt-Ada-Gcn5-acetyltransferase (SAGA) recruitment and chromatin remodeling activities on the HXT2 and HXT4 promoters. J Biol Chem 281(7):4523-31 PMID: 16368692
- Biswas D, et al. (2005) The yeast FACT complex has a role in transcriptional initiation. Mol Cell Biol 25(14):5812-22 PMID: 15987999
- Ingvarsdottir K, et al. (2005) H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex. Mol Cell Biol 25(3):1162-72 PMID: 15657441
- Lee D, et al. (2005) The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123(3):423-36 PMID: 16269334
- Lee KK, et al. (2005) The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol Cell Biol 25(3):1173-82 PMID: 15657442
- Lo WS, et al. (2005) Histone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms. EMBO J 24(5):997-1008 PMID: 15719021
- McMahon SJ, et al. (2005) Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity. Proc Natl Acad Sci U S A 102(24):8478-82 PMID: 15932941
- Pray-Grant MG, et al. (2005) Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433(7024):434-8 PMID: 15647753
- Timmers HT and Tora L (2005) SAGA unveiled. Trends Biochem Sci 30(1):7-10 PMID: 15653319
- Biswas D, et al. (2004) Role for Nhp6, Gcn5, and the Swi/Snf complex in stimulating formation of the TATA-binding protein-TFIIA-DNA complex. Mol Cell Biol 24(18):8312-21 PMID: 15340090
- Buryskova M, et al. (2004) Intracellular interleukin-1alpha functionally interacts with histone acetyltransferase complexes. J Biol Chem 279(6):4017-26 PMID: 14612453
- Cheng JX, et al. (2004) Activation of the Gal1 gene of yeast by pairs of 'non-classical' activators. Curr Biol 14(18):1675-9 PMID: 15380071
- Kao CF, et al. (2004) Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev 18(2):184-95 PMID: 14752010
- Lee KK, et al. (2004) Proteomic analysis of chromatin-modifying complexes in Saccharomyces cerevisiae identifies novel subunits. Biochem Soc Trans 32(Pt 6):899-903 PMID: 15506919
- McCutcheon JP and Eddy SR (2004) Detailed correction to: Computational identification of noncoding RNAs in Saccharomyces cerevisiae by comparative genomics Nucleic Acids Res. 31:4119-4128, 2003
- Powell DW, et al. (2004) Cluster analysis of mass spectrometry data reveals a novel component of SAGA. Mol Cell Biol 24(16):7249-59 PMID: 15282323
- Qi D, et al. (2004) Drosophila Ada2b is required for viability and normal histone H3 acetylation. Mol Cell Biol 24(18):8080-9 PMID: 15340070
- Rodríguez-Navarro S, et al. (2004) Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116(1):75-86 PMID: 14718168
- Topalidou I, et al. (2004) Spt3 and Mot1 cooperate in nucleosome remodeling independently of TBP recruitment. EMBO J 23(9):1943-8 PMID: 15057269
- Wu PY, et al. (2004) Molecular architecture of the S. cerevisiae SAGA complex. Mol Cell 15(2):199-208 PMID: 15260971
- Barlev NA, et al. (2003) A novel human Ada2 homologue functions with Gcn5 or Brg1 to coactivate transcription. Mol Cell Biol 23(19):6944-57 PMID: 12972612
- Reinke H and Hörz W (2003) Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol Cell 11(6):1599-607 PMID: 12820972
- Shogren-Knaak MA, et al. (2003) A native peptide ligation strategy for deciphering nucleosomal histone modifications. J Biol Chem 278(18):15744-8 PMID: 12595522
- Yu Y, et al. (2003) Regulation of TATA-binding protein binding by the SAGA complex and the Nhp6 high-mobility group protein. Mol Cell Biol 23(6):1910-21 PMID: 12612066
- Bhaumik SR and Green MR (2002) Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo. Mol Cell Biol 22(21):7365-71 PMID: 12370284
- Kulesza CA, et al. (2002) Adenovirus E1A requires the yeast SAGA histone acetyltransferase complex and associates with SAGA components Gcn5 and Tra1. Oncogene 21(9):1411-22 PMID: 11857084
- Papamichos-Chronakis M, et al. (2002) Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1. Mol Cell 9(6):1297-305 PMID: 12086626
- Pray-Grant MG, et al. (2002) The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol Cell Biol 22(24):8774-86 PMID: 12446794
- Russell P, et al. (2002) Characterization of mutations in NOT2 indicates that it plays an important role in maintaining the integrity of the CCR4-NOT complex. J Mol Biol 322(1):27-39 PMID: 12215412
- Shuen M, et al. (2002) The adenovirus E1A protein targets the SAGA but not the ADA transcriptional regulatory complex through multiple independent domains. J Biol Chem 277(34):30844-51 PMID: 12070146
- Sterner DE, et al. (2002) The SANT domain of Ada2 is required for normal acetylation of histones by the yeast SAGA complex. J Biol Chem 277(10):8178-86 PMID: 11777910
- Sterner DE, et al. (2002) SALSA, a variant of yeast SAGA, contains truncated Spt7, which correlates with activated transcription. Proc Natl Acad Sci U S A 99(18):11622-7 PMID: 12186975
- Wu PY and Winston F (2002) Analysis of Spt7 function in the Saccharomyces cerevisiae SAGA coactivator complex. Mol Cell Biol 22(15):5367-79 PMID: 12101232
- Bhoite LT, et al. (2001) The Swi5 activator recruits the Mediator complex to the HO promoter without RNA polymerase II. Genes Dev 15(18):2457-69 PMID: 11562354
- Durso RJ, et al. (2001) Analysis of TAF90 mutants displaying allele-specific and broad defects in transcription. Mol Cell Biol 21(21):7331-44 PMID: 11585915
- Gangloff YG, et al. (2001) Histone folds mediate selective heterodimerization of yeast TAF(II)25 with TFIID components yTAF(II)47 and yTAF(II)65 and with SAGA component ySPT7. Mol Cell Biol 21(5):1841-53 PMID: 11238921
- Stafford GA and Morse RH (2001) GCN5 dependence of chromatin remodeling and transcriptional activation by the GAL4 and VP16 activation domains in budding yeast. Mol Cell Biol 21(14):4568-78 PMID: 11416135
- Stockinger EJ, et al. (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res 29(7):1524-33 PMID: 11266554
- Anafi M, et al. (2000) GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone receptor. Mol Endocrinol 14(5):718-32 PMID: 10809234
- Gangloff YG, et al. (2000) The human TFIID components TAF(II)135 and TAF(II)20 and the yeast SAGA components ADA1 and TAF(II)68 heterodimerize to form histone-like pairs. Mol Cell Biol 20(1):340-51 PMID: 10594036
- Sendra R, et al. (2000) The yeast histone acetyltransferase A2 complex, but not free Gcn5p, binds stably to nucleosomal arrays. J Biol Chem 275(32):24928-34 PMID: 10825174
- Syntichaki P, et al. (2000) The Gcn5 bromodomain co-ordinates nucleosome remodelling. Nature 404(6776):414-7 PMID: 10746732
- Vignali M, et al. (2000) Distribution of acetylated histones resulting from Gal4-VP16 recruitment of SAGA and NuA4 complexes. EMBO J 19(11):2629-40 PMID: 10835360
- Wallberg AE, et al. (2000) Recruitment of chromatin remodelling factors during gene activation via the glucocorticoid receptor N-terminal domain. Biochem Soc Trans 28(4):410-4 PMID: 10961930
- Wallberg AE, et al. (2000) Recruitment of the SWI-SNF chromatin remodeling complex as a mechanism of gene activation by the glucocorticoid receptor tau1 activation domain. Mol Cell Biol 20(6):2004-13 PMID: 10688647
- Yu Y, et al. (2000) Architectural transcription factors and the SAGA complex function in parallel pathways to activate transcription. Mol Cell Biol 20(7):2350-7 PMID: 10713159
- Dudley AM, et al. (1999) The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo. Genes Dev 13(22):2940-5 PMID: 10580001
- Dudley AM, et al. (1999) Specific components of the SAGA complex are required for Gcn4- and Gcr1-mediated activation of the his4-912delta promoter in Saccharomyces cerevisiae. Genetics 151(4):1365-78 PMID: 10101163
- Eberharter A, et al. (1999) The ADA complex is a distinct histone acetyltransferase complex in Saccharomyces cerevisiae. Mol Cell Biol 19(10):6621-31 PMID: 10490601
- Gregory PD, et al. (1999) Chromatin remodelling at the PHO8 promoter requires SWI-SNF and SAGA at a step subsequent to activator binding. EMBO J 18(22):6407-14 PMID: 10562552
- Ikeda K, et al. (1999) Activation domain-specific and general transcription stimulation by native histone acetyltransferase complexes. Mol Cell Biol 19(1):855-63 PMID: 9858608
- Pérez-Martín J (1999) Chromatin and transcription in Saccharomyces cerevisiae. FEMS Microbiol Rev 23(4):503-23 PMID: 10422263
- Sanders SL, et al. (1999) TAF25p, a non-histone-like subunit of TFIID and SAGA complexes, is essential for total mRNA gene transcription in vivo. J Biol Chem 274(27):18847-50 PMID: 10383379
- Sterner DE, et al. (1999) Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol 19(1):86-98 PMID: 9858534
- Birck C, et al. (1998) Human TAF(II)28 and TAF(II)18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family. Cell 94(2):239-49 PMID: 9695952
- Martinez E, et al. (1998) A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J Biol Chem 273(37):23781-5 PMID: 9726987
- Natarajan K, et al. (1998) yTAFII61 has a general role in RNA polymerase II transcription and is required by Gcn4p to recruit the SAGA coactivator complex. Mol Cell 2(5):683-92 PMID: 9844640