Broxton CN, et al. (2018) A role for Candida albicans superoxide dismutase enzymes in glucose signaling. Biochem Biophys Res Commun 495(1):814-820 PMID:29154829
Liu NN, et al. (2018) Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Pathog 14(7):e1007076 PMID:30059535
Baron JA, et al. (2015) Cu/Zn superoxide dismutase and the proton ATPase Pma1p of Saccharomyces cerevisiae. Biochem Biophys Res Commun 462(3):251-6 PMID:25956063
Gleason JE, et al. (2014) Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans. J Biol Inorg Chem 19(4-5):595-603 PMID:24043471
Baron JA, et al. (2013) Superoxide triggers an acid burst in Saccharomyces cerevisiae to condition the environment of glucose-starved cells. J Biol Chem 288(7):4557-66 PMID:23281478
Culotta VC and Daly MJ (2013) Manganese complexes: diverse metabolic routes to oxidative stress resistance in prokaryotes and yeast. Antioxid Redox Signal 19(9):933-44 PMID:23249283
Rosenfeld L and Culotta VC (2012) Phosphate disruption and metal toxicity in Saccharomyces cerevisiae: effects of RAD23 and the histone chaperone HPC2. Biochem Biophys Res Commun 418(2):414-9 PMID:22281500
Gross DP, et al. (2011) Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system. Mol Biol Cell 22(20):3758-67 PMID:21865601
Reddi AR and Culotta VC (2011) Regulation of manganese antioxidants by nutrient sensing pathways in Saccharomyces cerevisiae. Genetics 189(4):1261-70 PMID:21926297
McNaughton RL, et al. (2010) Probing in vivo Mn2+ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. Proc Natl Acad Sci U S A 107(35):15335-9 PMID:20702768
Rosenfeld L, et al. (2010) The effect of phosphate accumulation on metal ion homeostasis in Saccharomyces cerevisiae. J Biol Inorg Chem 15(7):1051-62 PMID:20429018
Seetharaman SV, et al. (2010) Disrupted zinc-binding sites in structures of pathogenic SOD1 variants D124V and H80R. Biochemistry 49(27):5714-25 PMID:20515040
Leitch JM, et al. (2009) The right to choose: multiple pathways for activating copper,zinc superoxide dismutase. J Biol Chem 284(37):24679-83 PMID:19586921
Leitch JM, et al. (2009) Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS. J Biol Chem 284(33):21863-21871 PMID:19542232
Reddi AR, et al. (2009) The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection. Free Radic Biol Med 46(2):154-62 PMID:18973803
Kirby K, et al. (2008) Instability of superoxide dismutase 1 of Drosophila in mutants deficient for its cognate copper chaperone. J Biol Chem 283(51):35393-401 PMID:18948262
Watanabe S, et al. (2007) Increased affinity for copper mediated by cysteine 111 in forms of mutant superoxide dismutase 1 linked to amyotrophic lateral sclerosis. Free Radic Biol Med 42(10):1534-42 PMID:17448900
Yang M, et al. (2006) The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2. EMBO J 25(8):1775-83 PMID:16601688
Jensen LT and Culotta VC (2005) Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS. J Biol Chem 280(50):41373-9 PMID:16234242
Luk E, et al. (2005) Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces cerevisiae. J Biol Chem 280(24):22715-20 PMID:15851472
Yang M, et al. (2005) Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family. Biochem J 386(Pt 3):479-87 PMID:15498024
Carroll MC, et al. (2004) Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc Natl Acad Sci U S A 101(16):5964-9 PMID:15069187
Outten CE and Culotta VC (2004) Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J Biol Chem 279(9):7785-91 PMID:14672937
El Meskini R, et al. (2003) Supplying copper to the cuproenzyme peptidylglycine alpha-amidating monooxygenase. J Biol Chem 278(14):12278-84 PMID:12529325
Field LS, et al. (2003) Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J Biol Chem 278(30):28052-9 PMID:12748182
Jensen LT, et al. (2003) The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J Biol Chem 278(43):42036-40 PMID:12923174
Luk E, et al. (2003) Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc Natl Acad Sci U S A 100(18):10353-7 PMID:12890866
Outten CE and Culotta VC (2003) A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J 22(9):2015-24 PMID:12727869
I Bannon D, et al. (2002) Uptake of lead and iron by divalent metal transporter 1 in yeast and mammalian cells. Biochem Biophys Res Commun 295(4):978-84 PMID:12127992
Portnoy ME, et al. (2002) The distinct methods by which manganese and iron regulate the Nramp transporters in yeast. Biochem J 362(Pt 1):119-24 PMID:11829747
Luk EE and Culotta VC (2001) Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. J Biol Chem 276(50):47556-62 PMID:11602606
Portnoy ME, et al. (2001) Metal transporters that contribute copper to metallochaperones in Saccharomyces cerevisiae. Mol Genet Genomics 265(5):873-82 PMID:11523804
Sturtz LA, et al. (2001) A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276(41):38084-9 PMID:11500508
Portnoy ME, et al. (2000) Saccharomyces cerevisiae expresses three functionally distinct homologues of the nramp family of metal transporters. Mol Cell Biol 20(21):7893-902 PMID:11027260
Schmidt PJ, et al. (2000) Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein-protein interactions with the copper chaperone for SOD1. J Biol Chem 275(43):33771-6 PMID:10944535
Wong PC, et al. (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A 97(6):2886-91 PMID:10694572
Corson LB, et al. (1999) Oxidative stress and iron are implicated in fragmenting vacuoles of Saccharomyces cerevisiae lacking Cu,Zn-superoxide dismutase. J Biol Chem 274(39):27590-6 PMID:10488097
Garland SA, et al. (1999) Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. J Mol Biol 294(4):897-907 PMID:10588895
Liu XF and Culotta VC (1999) Mutational analysis of Saccharomyces cerevisiae Smf1p, a member of the Nramp family of metal transporters. J Mol Biol 289(4):885-91 PMID:10369769
Liu XF and Culotta VC (1999) Post-translation control of Nramp metal transport in yeast. Role of metal ions and the BSD2 gene. J Biol Chem 274(8):4863-8 PMID:9988727
Rae TD, et al. (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284(5415):805-8 PMID:10221913
Schmidt PJ, et al. (1999) A gain of superoxide dismutase (SOD) activity obtained with CCS, the copper metallochaperone for SOD1. J Biol Chem 274(52):36952-6 PMID:10601249
Schmidt PJ, et al. (1999) Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase. J Biol Chem 274(34):23719-25 PMID:10446130
Corson LB, et al. (1998) Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants. Proc Natl Acad Sci U S A 95(11):6361-6 PMID:9600970
Himelblau E, et al. (1998) Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol 117(4):1227-34 PMID:9701579
Klomp LW, et al. (1997) Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem 272(14):9221-6 PMID:9083055
Lin SJ, et al. (1997) A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272(14):9215-20 PMID:9083054
Jensen LT, et al. (1996) Enhanced effectiveness of copper ion buffering by CUP1 metallothionein compared with CRS5 metallothionein in Saccharomyces cerevisiae. J Biol Chem 271(31):18514-9 PMID:8702498
Lapinskas PJ, et al. (1996) The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions. Mol Microbiol 21(3):519-28 PMID:8866476
Lin SJ and Culotta VC (1996) Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles. Mol Cell Biol 16(11):6303-12 PMID:8887660
Slekar KH, et al. (1996) The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J Biol Chem 271(46):28831-6 PMID:8910528
Strain J and Culotta VC (1996) Copper ions and the regulation of Saccharomyces cerevisiae metallothionein genes under aerobic and anaerobic conditions. Mol Gen Genet 251(2):139-45 PMID:8668123
Culotta VC, et al. (1995) A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering. J Biol Chem 270(50):29991-7 PMID:8530401
Lin SJ and Culotta VC (1995) The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc Natl Acad Sci U S A 92(9):3784-8 PMID:7731983
Liu XF and Culotta VC (1994) The requirement for yeast superoxide dismutase is bypassed through mutations in BSD2, a novel metal homeostasis gene. Mol Cell Biol 14(11):7037-45 PMID:7935419
Culotta VC, et al. (1989) Copper and the ACE1 regulatory protein reversibly induce yeast metallothionein gene transcription in a mouse extract. Proc Natl Acad Sci U S A 86(21):8377-81 PMID:2682650